题目
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
代码实现
动态规划实现
class Solution {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int max = dp[0];
for (int i = 1; i < dp.length; i++) {
dp[i] = dp[i-1] > 0 ? dp[i-1] + nums[i] : nums[i];
max = max > dp[i] ? max : dp[i];
}
return max;
}
}
优化空间的动态规划
因为新的dp值只能当前dp值和nums[i]有关,可以将空间压缩为常数级别
class Solution {
public int maxSubArray(int[] nums) {
int dp = nums[0];
int max = nums[0];
for (int i = 1; i < nums.length; i++) {
dp = dp > 0 ? dp + nums[i] : nums[i];
max = max > dp ? max : dp;
}
return max;
}
}