平衡二叉树

需求:

    给定一个二叉树,确定它是高度平衡的。对于这个问题,一棵高度平衡的二叉树的定义是:一棵二叉树中每个节点的两个子树的深度相差不会超过1。

分析:

    平衡二叉树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,同时,平衡二叉树必定是二叉搜索树,反之则不一定。平衡二叉树的常用实现方法有红黑树AVL替罪羊树Treap伸展树等。 最小二叉平衡树的节点的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,可以参考Fibonacci(斐波那契)数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。

    根据定义,可知判断条件为:

    如果二叉树根是空的,那么肯定是平衡二叉树;如果根不是空的,那么需要保证其左右子树都是平衡二叉树,并且左右子树的深度之差应该小于等于1。因此需要使用递归和分治算法。

代码:

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /*
     * @param root: The root of binary tree.
     * @return: True if this Binary tree is Balanced, or false.
     */
    public boolean isBalanced(TreeNode root) {
        // write your code here
        if(root == null){
            return true;
        }
        
        //判断左右子树是否是平衡的并且深度差值是否小于等于1
        if(isBalanced(root.left) && isBalanced(root.right) && Math.abs(maxDepth(root.left)-maxDepth(root.right))<=1){
            return true;
        }
        
        return false;
    }
    
    //求二叉树深度
    public int maxDepth(TreeNode root){
        if(root == null){
            return 0;
        }
    
        //初始化深度1
        int depth = 1;
        //求左右子树的深度
        int ld = maxDepth(root.left);
        int rd = maxDepth(root.right);
        
        return Math.max(ld, rd)+depth;
    }
    
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值