空间杜宾模型相关检验及结果分析

一、数据介绍

数据名称:【stata代码】空间杜宾模型相关检验及结果分析

数据说明:包含全面的空间计量步骤——多种权重矩阵制作、空间相关性检验、SDM、SEM、SAR模型的命令、相关检验及其结果分析、中国南海九段线的中国地图制作,读者可以完全跟随文档说明进行空间计量的实证操作

二、参考文献

用途:研究金融集聚、创新效率、雾霾治理等的空间溢出效应。

[1]李林,丁艺,刘志华.金融集聚对区域经济增长溢出作用的空间计量分析[J].金融研究,2011(05):113-123.

[2]余泳泽,刘大勇.我国区域创新效率的空间外溢效应与价值链外溢效应——创新价值链视角下的多维空间面板模型研究[J].管理世界,2013(07):6-20+70+187.

[3]邵帅,李欣,曹建华,杨莉莉.中国雾霾污染治理的经济政策选择——基于空间溢出效应的视角[J].经济研究,2016,51(09):73-88.

三、数据概览

空间杜宾模型(SDM)是一种空间计量经济模型,用于分析空间相关性(spatial dependence)对经济变量之间关系的影响。Stata是一种统计分析软件,它提供了一些方便的命令来估计和分析空间杜宾模型。 在Stata中,可以使用spreg命令来估计空间杜宾模型。下面是一个使用spreg命令的例子: spreg y x1 x2, wmatrix(W) model(lag) robust 其中,y表示因变量,x1、x2表示自变量。wmatrix(W)表示空间权重矩阵,这是一个N行N列的对称矩阵,其中N是样本观测值的数量。model(lag)表示使用空间滞后模型进行估计,robust表示使用异方差稳健标准误估计。 这个命令将估计出空间杜宾模型,并输出模型的参数估计值、标准误、t值和p值等统计量。同时,还会输出Lagrange乘子(LM)统计量和Robust LM统计量,用于检验空间相关性的存在。 除了spreg命令,Stata还提供了其他一些命令用于进行空间计量经济分析,如sdestimate、whitetst等。 需要注意的是,在进行空间杜宾模型分析时,需要首先构建空间权重矩阵,以描述各个观测值之间的空间关系。常见的空间权重矩阵类型有距离权重矩阵、邻接权重矩阵和k近邻权重矩阵等,具体选择哪种类型的权重矩阵需要根据具体的研究问题和数据特征来确定。 总之,通过在Stata中使用spreg命令,可以方便地进行空间杜宾模型的估计和分析,得到模型的参数估计和检验结果,从而对经济变量之间的空间相关性进行深入研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

精品数据馆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值