如何下载风云三号FY-3D MERSI数据

 

 

可选择所需时段加入购物车,即可进行下载,不必全部下载,增加下载量。

数据描述 3.1 FY-3A 扫描辐射计 L1 数据 ················································································ 4 3.1.1 数据概况 ......................................................................................................................... 4 3.1.2 数据基本信息 ................................................................................................................. 4 3.1.3 L1 数据规格.................................................................................................................... 5 3.2 FY-3A 扫描辐射计 L1 OBC 数据 ········································································ 16 3.2.1 数据概况 ....................................................................................................................... 16 3.2.2 数据基本信息 ............................................................................................................... 16 3.2.3 L1 OBC 数据规格 ........................................................................................................ 16 3.3 FY-3A 中分辨率光谱成像仪 L1 数据(250m) ······················································ 29 3.3.1 数据概况 ....................................................................................................................... 29 3.3.2 数据基本信息 ............................................................................................................... 29 3.3.3 L1 数据规格.................................................................................................................. 30
HDF(Hierarchical Data Format)是一种灵活的数据格式,通常用于存储科学和工程数据。处理HDF数据需要使用相应的工具和库,例如HDF5、PyTables、h5py等。以下是一些处理HDF数据的示例: 1. 读取HDF文件 使用h5py库可以方便地读取HDF文件中的数据: ```python import h5py # 打开HDF文件 with h5py.File('data.hdf', 'r') as f: # 获取数据集 dataset = f['dataset_name'] # 读取数据 data = dataset[:] ``` 2. 写入HDF文件 使用h5py库也可以方便地将数据写入HDF文件中: ```python import h5py import numpy as np # 创建数据 data = np.random.rand(100, 100) # 创建HDF文件 with h5py.File('data.hdf', 'w') as f: # 创建数据集 dataset = f.create_dataset('dataset_name', data.shape, dtype='f') # 写入数据 dataset[:] = data ``` 3. 查询HDF文件中的数据 使用h5py库可以查询HDF文件中所有数据集的名称: ```python import h5py # 打开HDF文件 with h5py.File('data.hdf', 'r') as f: # 获取所有数据集的名称 dataset_names = list(f.keys()) ``` 4. 使用PyTables库处理HDF数据 PyTables库提供了更高层次的接口,可用于处理大型HDF数据文件。以下是一个示例: ```python import tables as tb # 打开HDF文件 with tb.open_file('data.hdf', 'r') as f: # 获取数据表 table = f.root.table_name # 查询数据 data = table.read_where('column_name > 10') ``` 这些都是处理HDF数据的基本示例,具体的使用方法还需要根据实际情况进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值