这是一款基于 Playwright 开发的小红书自动搜索和评论工具,作为 MCP Server,可通过特定配置接入 MCP Client(如Claude for Desktop),帮助用户自动完成登录小红书、搜索关键词、获取笔记内容及发布AI生成评论等操作。
主要特点与优势
- 深度集成AI能力:利用MCP客户端(如Claude)的大模型能力,生成更自然、更相关的评论内容
- 模块化设计:将功能分为笔记分析、评论生成和评论发布三个独立模块,提高代码可维护性
- 强大的内容获取能力:集成多种获取笔记内容的方法,确保能完整获取各类笔记的标题、作者和正文内容
- 持久化登录:使用持久化浏览器上下文,首次登录后无需重复登录
- 两步式评论流程:先获取笔记分析结果,然后由MCP客户端生成并发布评论
2.0版本主要优化
- 内容获取增强:重构了笔记内容获取模块,增加页面加载等待时间和滚动操作,实现四种不同的内容获取方法
- AI评论生成:重构评论功能,将笔记分析结果返回给MCP客户端,由客户端的AI能力生成更自然、更相关的评论
- 功能模块化:将功能分为笔记分析、评论生成和评论发布三个独立模块,提高代码可维护性
- 搜索结果优化:解决了搜索笔记时标题不显示的问题,提供更完整的搜索结果
- 错误处理增强:添加更详细的错误处理和调试信息输出
一、核心功能
1. 用户认证与登录
- 持久化登录:支持手动扫码登录,首次登录后保存状态,后续使用无需重复扫码
- 登录状态管理:自动检测登录状态,并在需要时提示用户登录
2. 内容发现与获取
- 智能关键词搜索:支持多关键词搜索,可指定返回结果数量,并提供完整的笔记信息
- 多维度内容获取:集成四种不同的获取方法,确保能准确获取笔记的标题、作者、发布时间和正文内容
- 评论数据获取:支持获取笔记的评论内容,包括评论者、评论文本和时间信息
3. 内容分析与生成
- 笔记内容分析:自动分析笔记内容,提取关键信息并识别笔记所属领域
- AI评论生成:利用MCP客户端(如Claude)的AI能力,基于笔记内容生成自然、相关的评论
- 多类型评论支持:支持四种不同类型的评论生成:
- 引流型:引导用户关注或私聊
- 点赞型:简单互动获取好感
- 咨询型:以问题形式增加互动
- 专业型:展示专业知识建立权威
4. 数据返回与反馈
- 结构化数据返回:将笔记分析结果以JSON格式返回给MCP客户端,便于AI生成评论
- 评论发布反馈:提供评论发布结果的实时反馈
二、安装步骤
-
Python 环境准备:确保系统已安装 Python 3.8 或更高版本。若未安装,可从 Python 官方网站下载并安装。
-
项目获取:将本项目克隆或下载到本地。
-
创建虚拟环境:在项目目录下创建并激活虚拟环境(推荐):
# 创建虚拟环境 python3 -m venv venv # 激活虚拟环境 # Windows venvScriptsactivate # macOS/Linux source venv/bin/activate
-
安装依赖:在激活的虚拟环境中安装所需依赖:
pip install -r requirements.txt pip install fastmcp
-
安装浏览器:安装Playwright所需的浏览器:
playwright install
三、MCP Server 配置
在 MCP Client(如Claude for Desktop)的配置文件中添加以下内容,将本工具配置为 MCP Server:
Mac 配置示例
{
"mcpServers": {
"xiaohongshu MCP": {
"command": "/绝对路径/到/venv/bin/python3",
"args": [
"/绝对路径/到/xiaohongshu_mcp.py",
"--stdio"
]
}
}
}
Windows 配置示例
{
"mcpServers": {
"xiaohongshu MCP": {
"command": "C:\Users\username\Desktop\MCP\Redbook-Search-Comment-MCP2.0\venv\Scripts\python.exe",
"args": [
"C:\Users\username\Desktop\MCP\Redbook-Search-Comment-MCP2.0\xiaohongshu_mcp.py",
"--stdio"
]
}
}
}
重要提示:
- 请使用虚拟环境中Python解释器的完整绝对路径
- Mac示例:
/Users/username/Desktop/RedBook-Search-Comment-MCP/venv/bin/python3
- Windows示例:
C:UsersusernameDesktopMCPRedbook-Search-Comment-MCP2.0venvScriptspython.exe
- 同样,xiaohongshu_mcp.py也需要使用完整绝对路径
- Windows路径中的反斜杠在JSON中需要双重转义(使用 ``)
Python 命令区分(python 与 python3)
不同系统环境中,Python 命令可能有所不同,这取决于您的系统配置。以下是如何确定您应该使用哪个命令:
-
确定您的 Python 命令:
- 在终端中运行:
python --version
和python3 --version
- 查看哪个命令返回 Python 3.x 版本(本项目需要 Python 3.8+)
- 在终端中运行:
-
在虚拟环境中确认:
- 激活虚拟环境后,运行
which python
或where python
(Windows) - 这将显示 Python 解释器的完整路径
- 激活虚拟环境后,运行
-
配置中使用正确的命令:
- Mac:通常为
python3
或虚拟环境中的python
- Windows:通常为
python
或python.exe
- Mac:通常为
在配置文件中,始终使用虚拟环境中 Python 解释器的完整绝对路径,而不是命令名称。
四、使用方法
(一)启动服务器
-
直接运行:在项目目录下,激活虚拟环境后执行:
python3 xiaohongshu_mcp.py
-
通过 MCP Client 启动:配置好MCP Client后,按照客户端的操作流程进行启动和连接。
(二)主要功能操作
在MCP Client(如Claude for Desktop)中连接到服务器后,可以使用以下功能:
1. 登录小红书
工具函数:
mcp0_login()
在MCP客户端中的使用方式: 直接发送以下文本:
帮我登录小红书账号
或:
请登录小红书
功能说明:首次使用时会打开浏览器窗口,等待用户手动扫码登录。登录成功后,工具会保存登录状态。
2. 搜索笔记
工具函数:
mcp0_search_notes(keywords="关键词", limit=5)
在MCP客户端中的使用方式: 发送包含关键词的搜索请求:
帮我搜索小红书笔记,关键词为:美食
指定返回数量:
帮我搜索小红书笔记,关键词为旅游,返回10条结果
功能说明:根据关键词搜索小红书笔记,并返回指定数量的结果。默认返回5条结果。
3. 获取笔记内容
工具函数:
mcp0_get_note_content(url="笔记URL")
在MCP客户端中的使用方式: 发送包含笔记URL的请求:
帮我获取这个笔记的内容:https://www.xiaohongshu.com/search_result/xxxx
或:
请查看这个小红书笔记的内容:https://www.xiaohongshu.com/search_result/xxxx
功能说明:获取指定笔记URL的详细内容,包括标题、作者、发布时间和正文内容。
4. 获取笔记评论
工具函数:
mcp0_get_note_comments(url="笔记URL")
在MCP客户端中的使用方式: 发送包含笔记URL的评论请求:
帮我获取这个笔记的评论:https://www.xiaohongshu.com/search_result/xxxx
或:
请查看这个小红书笔记的评论区:https://www.xiaohongshu.com/search_result/xxxx
功能说明:获取指定笔记URL的评论信息,包括评论者、评论内容和评论时间。
5. 发布智能评论
工具函数:
mcp0_post_smart_comment(url="笔记URL", comment_type="评论类型")
在MCP客户端中的使用方式: 发送包含笔记URL和评论类型的请求:
帮我为这个笔记写一条[类型]评论:https://www.xiaohongshu.com/explore/xxxx
功能说明:获取笔记分析结果,并返回给MCP客户端,由客户端生成评论并调用post_comment发布。
6. 发布评论
工具函数:
mcp0_post_comment(url="笔记URL", comment="评论内容")
在MCP客户端中的使用方式: 发送包含笔记URL和评论内容的请求:
帮我发布这条评论到笔记:https://www.xiaohongshu.com/explore/xxxx
评论内容:[评论内容]
功能说明:将指定的评论内容发布到笔记页面。
四、使用指南
0. 工作原理
本工具采用两步式流程实现智能评论功能:
-
笔记分析:调用
post_smart_comment
工具获取笔记信息(标题、作者、内容等) -
评论生成与发布:
- MCP客户端(如Claude)基于笔记分析结果生成评论
- 调用
post_comment
工具发布评论
这种设计充分利用了MCP客户端的AI能力,实现了更自然、相关的评论生成。
1. 在MCP客户端中的使用方式
基本操作
功能 | 示例命令 |
---|---|
搜索笔记 | 帮我搜索关于[关键词]的小红书笔记 |
获取笔记内容 | 帮我查看这篇小红书笔记的内容:https://www.xiaohongshu.com/explore/xxxx |
分析笔记 | 帮我分析这篇小红书笔记:https://www.xiaohongshu.com/explore/xxxx |
获取评论 | 帮我查看这篇笔记的评论:https://www.xiaohongshu.com/explore/xxxx |
生成评论 | 帮我为这篇小红书笔记写一条[类型]评论:https://www.xiaohongshu.com/explore/xxxx |
评论类型选项
类型 | 描述 | 适用场景 |
---|---|---|
引流 | 引导用户关注或私聊 | 增加粉丝或私信互动 |
点赞 | 简单互动获取好感 | 增加曝光和互动率 |
咨询 | 以问题形式增加互动 | 引发博主回复,增加互动深度 |
专业 | 展示专业知识建立权威 | 建立专业形象,增强可信度 |
2. 实际工作流程示例
用户: 帮我为这个小红书笔记写一条专业类型的评论:https://www.xiaohongshu.com/explore/xxxx
Claude: 我会帮您写一条专业类型的评论。让我获取笔记内容并生成评论。
[调用post_smart_comment工具]
# 工具返回笔记分析结果,包含标题、作者、内容、领域和关键词
Claude: 我已经获取到笔记信息,这是一篇关于[主题]的笔记。基于内容,我生成并发布了以下专业评论:
"[生成的专业评论内容]"
[调用post_comment工具]
Claude: 评论已成功发布!
注意:上述流程中,post_smart_comment
工具只负责获取笔记分析结果并返回给MCP客户端,实际的评论生成是由MCP客户端(如Claude)自身完成的。
3. 工作原理
新版小红书MCP工具采用了模块化设计,分为三个核心模块:
-
笔记分析模块(analyze_note)
- 获取笔记的标题、作者、发布时间和内容
- 分析笔记所属领域和关键词
- 返回结构化的笔记信息
-
评论生成模块(由MCP客户端实现)
- 接收笔记分析结果
- 根据笔记内容和评论类型生成自然、相关的评论
- 允许用户在发布前预览和修改评论
-
评论发布模块(post_comment)
- 接收生成的评论内容
- 定位并操作评论输入框
- 发布评论并返回结果
五、代码结构
- xiaohongshu_mcp.py:实现主要功能的核心文件,包含登录、搜索、获取内容和评论、发布评论等功能的代码逻辑。
- requirements.txt:记录项目所需的依赖库。
六、常见问题与解决方案
-
连接失败:
- 确保使用了虚拟环境中Python解释器的完整绝对路径
- 确保MCP服务器正在运行
- 尝试重启MCP服务器和客户端
-
浏览器会话问题: 如果遇到
Page.goto: Target page, context or browser has been closed
错误:- 重启MCP服务器
- 重新连接并登录
-
依赖安装问题: 如果遇到
ModuleNotFoundError
错误:- 确保在虚拟环境中安装了所有依赖
- 检查是否安装了fastmcp包
七、注意事项与问题解决
1. 使用注意事项
- 浏览器模式:工具使用 Playwright 的非隐藏模式运行,运行时会打开真实浏览器窗口
- 登录方式:首次登录需要手动扫码,后续使用若登录状态有效,则无需再次扫码
- 平台规则:使用过程中请严格遵守小红书平台的相关规定,避免过度操作,防止账号面临封禁风险
- 评论频率:建议控制评论发布频率,避免短时间内发布大量评论,每天发布评论数量不超过30条
2. 常见问题与解决方案
浏览器实例问题
如果遇到“Page.goto: Target page, context or browser has been closed”类似错误,可能是浏览器实例没有正确关闭或数据目录锁文件问题,请尝试:
# 删除浏览器锁文件 rm -f /项目路径/browser_data/SingletonLock /项目路径/browser_data/SingletonCookie # 如果问题仍然存在,备份并重建浏览器数据目录 mkdir -p /项目路径/backup_browser_data mv /项目路径/browser_data/* /项目路径/backup_browser_data/ mkdir -p /项目路径/browser_data
内容获取问题
如果无法获取笔记内容或内容不完整,可尝试:
- 增加等待时间:小红书笔记页面可能需要更长的加载时间,特别是包含大量图片或视频的笔记
- 清除浏览器缓存:有时浏览器缓存会影响内容获取
- 尝试不同的获取方法:工具集成了多种获取方法,如果一种方法失败,可以尝试其他方法
平台变化适应
小红书平台可能会更新页面结构和DOM元素,导致工具无法正常工作。如遇到此类问题:
- 检查项目更新:关注项目最新版本,及时更新
- 调整选择器:如果您熟悉代码,可以尝试调整CSS选择器或XPath表达式
- 提交问题反馈:向项目维护者提交问题,描述遇到的具体问题和页面变化
八、免责声明
本工具仅用于学习和研究目的,使用者应严格遵守相关法律法规以及小红书平台的规定。因使用不当导致的任何问题,本项目开发者不承担任何责任。