小红书自动搜索评论工具(MCP Server 2.0)

这是一款基于 Playwright 开发的小红书自动搜索和评论工具,作为 MCP Server,可通过特定配置接入 MCP Client(如Claude for Desktop),帮助用户自动完成登录小红书、搜索关键词、获取笔记内容及发布AI生成评论等操作。

主要特点与优势

  • 深度集成AI能力:利用MCP客户端(如Claude)的大模型能力,生成更自然、更相关的评论内容
  • 模块化设计:将功能分为笔记分析、评论生成和评论发布三个独立模块,提高代码可维护性
  • 强大的内容获取能力:集成多种获取笔记内容的方法,确保能完整获取各类笔记的标题、作者和正文内容
  • 持久化登录:使用持久化浏览器上下文,首次登录后无需重复登录
  • 两步式评论流程:先获取笔记分析结果,然后由MCP客户端生成并发布评论

2.0版本主要优化

  • 内容获取增强:重构了笔记内容获取模块,增加页面加载等待时间和滚动操作,实现四种不同的内容获取方法
  • AI评论生成:重构评论功能,将笔记分析结果返回给MCP客户端,由客户端的AI能力生成更自然、更相关的评论
  • 功能模块化:将功能分为笔记分析、评论生成和评论发布三个独立模块,提高代码可维护性
  • 搜索结果优化:解决了搜索笔记时标题不显示的问题,提供更完整的搜索结果
  • 错误处理增强:添加更详细的错误处理和调试信息输出

一、核心功能

1. 用户认证与登录

  • 持久化登录:支持手动扫码登录,首次登录后保存状态,后续使用无需重复扫码
  • 登录状态管理:自动检测登录状态,并在需要时提示用户登录

2. 内容发现与获取

  • 智能关键词搜索:支持多关键词搜索,可指定返回结果数量,并提供完整的笔记信息
  • 多维度内容获取:集成四种不同的获取方法,确保能准确获取笔记的标题、作者、发布时间和正文内容
  • 评论数据获取:支持获取笔记的评论内容,包括评论者、评论文本和时间信息

3. 内容分析与生成

  • 笔记内容分析:自动分析笔记内容,提取关键信息并识别笔记所属领域
  • AI评论生成:利用MCP客户端(如Claude)的AI能力,基于笔记内容生成自然、相关的评论
  • 多类型评论支持:支持四种不同类型的评论生成:
    • 引流型:引导用户关注或私聊
    • 点赞型:简单互动获取好感
    • 咨询型:以问题形式增加互动
    • 专业型:展示专业知识建立权威

4. 数据返回与反馈

  • 结构化数据返回:将笔记分析结果以JSON格式返回给MCP客户端,便于AI生成评论
  • 评论发布反馈:提供评论发布结果的实时反馈

二、安装步骤

  1. Python 环境准备:确保系统已安装 Python 3.8 或更高版本。若未安装,可从 Python 官方网站下载并安装。

  2. 项目获取:将本项目克隆或下载到本地。

  3. 创建虚拟环境:在项目目录下创建并激活虚拟环境(推荐):

     

    # 创建虚拟环境 python3 -m venv venv # 激活虚拟环境 # Windows venvScriptsactivate # macOS/Linux source venv/bin/activate

  4. 安装依赖:在激活的虚拟环境中安装所需依赖:

     

    pip install -r requirements.txt pip install fastmcp

  5. 安装浏览器:安装Playwright所需的浏览器:

     

    playwright install

三、MCP Server 配置

在 MCP Client(如Claude for Desktop)的配置文件中添加以下内容,将本工具配置为 MCP Server:

Mac 配置示例

{
    "mcpServers": {
        "xiaohongshu MCP": {
            "command": "/绝对路径/到/venv/bin/python3",
            "args": [
                "/绝对路径/到/xiaohongshu_mcp.py",
                "--stdio"
            ]
        }
    }
}

Windows 配置示例

{
    "mcpServers": {
        "xiaohongshu MCP": {
            "command": "C:\Users\username\Desktop\MCP\Redbook-Search-Comment-MCP2.0\venv\Scripts\python.exe",
            "args": [
                "C:\Users\username\Desktop\MCP\Redbook-Search-Comment-MCP2.0\xiaohongshu_mcp.py",
                "--stdio"
            ]
        }
    }
}

重要提示

  • 请使用虚拟环境中Python解释器的完整绝对路径
  • Mac示例:/Users/username/Desktop/RedBook-Search-Comment-MCP/venv/bin/python3
  • Windows示例:C:UsersusernameDesktopMCPRedbook-Search-Comment-MCP2.0venvScriptspython.exe
  • 同样,xiaohongshu_mcp.py也需要使用完整绝对路径
  • Windows路径中的反斜杠在JSON中需要双重转义(使用 ``)

Python 命令区分(python 与 python3)

不同系统环境中,Python 命令可能有所不同,这取决于您的系统配置。以下是如何确定您应该使用哪个命令:

  1. 确定您的 Python 命令

    • 在终端中运行:python --version 和 python3 --version
    • 查看哪个命令返回 Python 3.x 版本(本项目需要 Python 3.8+)
  2. 在虚拟环境中确认

    • 激活虚拟环境后,运行 which python 或 where python(Windows)
    • 这将显示 Python 解释器的完整路径
  3. 配置中使用正确的命令

    • Mac:通常为 python3 或虚拟环境中的 python
    • Windows:通常为 python 或 python.exe

在配置文件中,始终使用虚拟环境中 Python 解释器的完整绝对路径,而不是命令名称。

四、使用方法

(一)启动服务器

  1. 直接运行:在项目目录下,激活虚拟环境后执行:

     

    python3 xiaohongshu_mcp.py

  2. 通过 MCP Client 启动:配置好MCP Client后,按照客户端的操作流程进行启动和连接。

(二)主要功能操作

在MCP Client(如Claude for Desktop)中连接到服务器后,可以使用以下功能:

1. 登录小红书

工具函数

mcp0_login()

在MCP客户端中的使用方式: 直接发送以下文本:

帮我登录小红书账号

或:

请登录小红书

功能说明:首次使用时会打开浏览器窗口,等待用户手动扫码登录。登录成功后,工具会保存登录状态。

2. 搜索笔记

工具函数

mcp0_search_notes(keywords="关键词", limit=5)

在MCP客户端中的使用方式: 发送包含关键词的搜索请求:

帮我搜索小红书笔记,关键词为:美食

指定返回数量:

帮我搜索小红书笔记,关键词为旅游,返回10条结果

功能说明:根据关键词搜索小红书笔记,并返回指定数量的结果。默认返回5条结果。

3. 获取笔记内容

工具函数

mcp0_get_note_content(url="笔记URL")

在MCP客户端中的使用方式: 发送包含笔记URL的请求:

帮我获取这个笔记的内容:https://www.xiaohongshu.com/search_result/xxxx

或:

请查看这个小红书笔记的内容:https://www.xiaohongshu.com/search_result/xxxx

功能说明:获取指定笔记URL的详细内容,包括标题、作者、发布时间和正文内容。

4. 获取笔记评论

工具函数

mcp0_get_note_comments(url="笔记URL")

在MCP客户端中的使用方式: 发送包含笔记URL的评论请求:

帮我获取这个笔记的评论:https://www.xiaohongshu.com/search_result/xxxx

或:

请查看这个小红书笔记的评论区:https://www.xiaohongshu.com/search_result/xxxx

功能说明:获取指定笔记URL的评论信息,包括评论者、评论内容和评论时间。

5. 发布智能评论

工具函数

mcp0_post_smart_comment(url="笔记URL", comment_type="评论类型")

在MCP客户端中的使用方式: 发送包含笔记URL和评论类型的请求:

帮我为这个笔记写一条[类型]评论:https://www.xiaohongshu.com/explore/xxxx

功能说明:获取笔记分析结果,并返回给MCP客户端,由客户端生成评论并调用post_comment发布。

6. 发布评论

工具函数

mcp0_post_comment(url="笔记URL", comment="评论内容")

在MCP客户端中的使用方式: 发送包含笔记URL和评论内容的请求:

帮我发布这条评论到笔记:https://www.xiaohongshu.com/explore/xxxx
评论内容:[评论内容]

功能说明:将指定的评论内容发布到笔记页面。

四、使用指南

0. 工作原理

本工具采用两步式流程实现智能评论功能:

  1. 笔记分析:调用post_smart_comment工具获取笔记信息(标题、作者、内容等)

  2. 评论生成与发布

    • MCP客户端(如Claude)基于笔记分析结果生成评论
    • 调用post_comment工具发布评论

这种设计充分利用了MCP客户端的AI能力,实现了更自然、相关的评论生成。

1. 在MCP客户端中的使用方式

基本操作
功能示例命令
搜索笔记帮我搜索关于[关键词]的小红书笔记
获取笔记内容帮我查看这篇小红书笔记的内容:https://www.xiaohongshu.com/explore/xxxx
分析笔记帮我分析这篇小红书笔记:https://www.xiaohongshu.com/explore/xxxx
获取评论帮我查看这篇笔记的评论:https://www.xiaohongshu.com/explore/xxxx
生成评论帮我为这篇小红书笔记写一条[类型]评论:https://www.xiaohongshu.com/explore/xxxx
评论类型选项
类型描述适用场景
引流引导用户关注或私聊增加粉丝或私信互动
点赞简单互动获取好感增加曝光和互动率
咨询以问题形式增加互动引发博主回复,增加互动深度
专业展示专业知识建立权威建立专业形象,增强可信度

2. 实际工作流程示例

用户: 帮我为这个小红书笔记写一条专业类型的评论:https://www.xiaohongshu.com/explore/xxxx

Claude: 我会帮您写一条专业类型的评论。让我获取笔记内容并生成评论。
[调用post_smart_comment工具]

# 工具返回笔记分析结果,包含标题、作者、内容、领域和关键词

Claude: 我已经获取到笔记信息,这是一篇关于[主题]的笔记。基于内容,我生成并发布了以下专业评论:

"[生成的专业评论内容]"

[调用post_comment工具]

Claude: 评论已成功发布!

注意:上述流程中,post_smart_comment工具只负责获取笔记分析结果并返回给MCP客户端,实际的评论生成是由MCP客户端(如Claude)自身完成的。

3. 工作原理

新版小红书MCP工具采用了模块化设计,分为三个核心模块:

  1. 笔记分析模块(analyze_note)

    • 获取笔记的标题、作者、发布时间和内容
    • 分析笔记所属领域和关键词
    • 返回结构化的笔记信息
  2. 评论生成模块(由MCP客户端实现)

    • 接收笔记分析结果
    • 根据笔记内容和评论类型生成自然、相关的评论
    • 允许用户在发布前预览和修改评论
  3. 评论发布模块(post_comment)

    • 接收生成的评论内容
    • 定位并操作评论输入框
    • 发布评论并返回结果

五、代码结构

  • xiaohongshu_mcp.py:实现主要功能的核心文件,包含登录、搜索、获取内容和评论、发布评论等功能的代码逻辑。
  • requirements.txt:记录项目所需的依赖库。

六、常见问题与解决方案

  1. 连接失败

    • 确保使用了虚拟环境中Python解释器的完整绝对路径
    • 确保MCP服务器正在运行
    • 尝试重启MCP服务器和客户端
  2. 浏览器会话问题: 如果遇到Page.goto: Target page, context or browser has been closed错误:

    • 重启MCP服务器
    • 重新连接并登录
  3. 依赖安装问题: 如果遇到ModuleNotFoundError错误:

    • 确保在虚拟环境中安装了所有依赖
    • 检查是否安装了fastmcp包

七、注意事项与问题解决

1. 使用注意事项

  • 浏览器模式:工具使用 Playwright 的非隐藏模式运行,运行时会打开真实浏览器窗口
  • 登录方式:首次登录需要手动扫码,后续使用若登录状态有效,则无需再次扫码
  • 平台规则:使用过程中请严格遵守小红书平台的相关规定,避免过度操作,防止账号面临封禁风险
  • 评论频率:建议控制评论发布频率,避免短时间内发布大量评论,每天发布评论数量不超过30条

2. 常见问题与解决方案

浏览器实例问题

如果遇到“Page.goto: Target page, context or browser has been closed”类似错误,可能是浏览器实例没有正确关闭或数据目录锁文件问题,请尝试:

 

# 删除浏览器锁文件 rm -f /项目路径/browser_data/SingletonLock /项目路径/browser_data/SingletonCookie # 如果问题仍然存在,备份并重建浏览器数据目录 mkdir -p /项目路径/backup_browser_data mv /项目路径/browser_data/* /项目路径/backup_browser_data/ mkdir -p /项目路径/browser_data

内容获取问题

如果无法获取笔记内容或内容不完整,可尝试:

  1. 增加等待时间:小红书笔记页面可能需要更长的加载时间,特别是包含大量图片或视频的笔记
  2. 清除浏览器缓存:有时浏览器缓存会影响内容获取
  3. 尝试不同的获取方法:工具集成了多种获取方法,如果一种方法失败,可以尝试其他方法
平台变化适应

小红书平台可能会更新页面结构和DOM元素,导致工具无法正常工作。如遇到此类问题:

  1. 检查项目更新:关注项目最新版本,及时更新
  2. 调整选择器:如果您熟悉代码,可以尝试调整CSS选择器或XPath表达式
  3. 提交问题反馈:向项目维护者提交问题,描述遇到的具体问题和页面变化

八、免责声明

本工具仅用于学习和研究目的,使用者应严格遵守相关法律法规以及小红书平台的规定。因使用不当导致的任何问题,本项目开发者不承担任何责任。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值