Linux发行版的数量 - 华为OD机试真题(A卷、JavaScript题解)

华为OD机试题库《C++》限时优惠 9.9

华为OD机试题库《Python》限时优惠 9.9

华为OD机试题库《JavaScript》限时优惠 9.9

代码不懂有疑问欢迎留言或私我们的VX:code5bug。

华为OD机试

题目描述

Linux操作系统有多个发行版,distrowatch.com提供了各个发行版的资料。这些发行版互相存在关联,例如Ubuntu基于Debian开发,而Mint又基于Ubuntu开发,那么我们认为Mint同Debian也存在关联。

发行版集是一个或多个相关存在关联的操作系统发行版,集合内不包含没有关联的发行版。

给你一个n*n的矩阵 isConnected ,其中 isConnected[i][j]=1表示第i个发行版和第j个发行版直接关联,而 isConnected[i][j]=0表示二者不直接相连。

返回最大的发行版集中发行版的数量

输入描述

第一行输入发行版的总数量N,之后每行表示各发行版间是否直接相关

1<=N <= 200

输出描述

输出最大的发行版集中发行版的数量

示例1

输入:
4
1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 1

输出:
3

题解

问题分析

我们需要找出一个最大“发行版集”的大小,定义为在给定的矩阵 isConnected 中,元素为 1 的地方表示两个操作系统之间直接关联,而 0 表示不直接关联。我们需要将所有直接或间接关联的操作系统归为一组,最终返回最大的关联组(即连通分量)的大小。

解决这个问题时,利用 并查集(Union-Find)来处理集合的合并与查询是非常高效的。这里我们不使用秩(rank)优化,仅使用基本的路径压缩和合并操作。

并查集算法步骤

  1. 初始化:每个操作系统自成一个集合。
  2. Union:当 isConnected[i][j] = 1 时,将操作系统 ij 合并为一个集合。
  3. Find:查找一个操作系统所在的集合的根节点。
  4. 计算:每次合并后,统计每个集合的大小,最终返回最大的集合大小。

JavaScript

const rl = require("readline").createInterface({
  input: process.stdin,
});
var iter = rl[Symbol.asyncIterator]();
const readline = async () => (await iter.next()).value;

class UnionFind {
  constructor(n) {
    this.parent = Array.from({ length: n }, (_, i) => i);
    this.size = Array(n).fill(1);
  }

  find(x) {
    if (this.parent[x] !== x) {
      this.parent[x] = this.find(this.parent[x]); // 路径压缩
    }
    return this.parent[x];
  }

  union(x, y) {
    const rootX = this.find(x);
    const rootY = this.find(y);

    if (rootX !== rootY) {
      this.parent[rootX] = rootY; // 合并
      this.size[rootY] += this.size[rootX]; // 更新集合大小
    }
  }

  getSize(x) {
    return this.size[this.find(x)];
  }
}

void (async function () {
  const isConnected = [];

  const n = parseInt(await readline());
  for (let i = 0; i < n; i++) {
    isConnected.push((await readline()).split(" ").map(Number));
  }

  const uf = new UnionFind(n);

  // 合并操作
  for (let i = 0; i < n; i++) {
    for (let j = i + 1; j < n; j++) {
      if (isConnected[i][j] === 1) {
        uf.union(i, j);
      }
    }
  }

  // 查找最大的集
  let max = 0;
  for (let i = 0; i < n; i++) {
    max = Math.max(max, uf.getSize(i));
  }

  console.log(max); // 输出结果
  rl.close();
})();

结论

通过并查集,我们可以高效地处理多个元素之间的关系合并与查询问题。所有的并查集操作,尤其是路径压缩,确保了在处理大量数据时的高效性。本问题的解决使用了基本的路径压缩技术而没有使用秩(rank)优化,但仍能在合理的时间内得到答案。

整理题解不易, 如果有帮助到您,请给点个赞 ‍❤️‍ 和收藏 ⭐,让更多的人看到。🙏🙏🙏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

什码情况

你的鼓励就是我最大的动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值