简介
RabbitMQ是一个AMQP的开源实现,由以高性能、可伸缩性出名的Erlang写成。RabbitMQ Server适用的OS有:Windows、Linux/Unix和Mac OS X,RabbitMQ官方的Client有Java、.Net/C#和Erlang。
1.基本概念
Message
消息,消息是不具名的,它由消息头和消息体组成。消息体是不透明的,而消息头则由一系列的可选属性组成,这些属性包括routing-key(路由键)、priority(相对于其他消息的优先权)、delivery-mode(指出该消息可能需要持久性存储)等。
Publisher
消息的生产者,也是一个向交换器发布消息的客户端应用程序。
Exchange
交换器,用来接收生产者发送的消息并将这些消息路由给服务器中的队列。
Binding
绑定,用于消息队列和交换器之间的关联。一个绑定就是基于路由键将交换器和消息队列连接起来的路由规则,所以可以将交换器理解成一个由绑定构成的路由表。
Queue
消息队列,用来保存消息直到发送给消费者。它是消息的容器,也是消息的终点。一个消息可投入一个或多个队列。消息一直在队列里面,等待消费者连接到这个队列将其取走。
Connection
网络连接,比如一个TCP连接。
Channel
信道,多路复用连接中的一条独立的双向数据流通道。信道是建立在真实的TCP连接内地虚拟连接,AMQP 命令都是通过信道发出去的,不管是发布消息、订阅队列还是接收消息,这些动作都是通过信道完成。因为对于操作系统来说建立和销毁 TCP 都是非常昂贵的开销,所以引入了信道的概念,以复用一条 TCP 连接。
Consumer
消息的消费者,表示一个从消息队列中取得消息的客户端应用程序。
Virtual Host
虚拟主机,表示一批交换器、消息队列和相关对象。虚拟主机是共享相同的身份认证和加密环境的独立服务器域。每个 vhost 本质上就是一个 mini 版的 RabbitMQ 服务器,拥有自己的队列、交换器、绑定和权限机制。vhost 是 AMQP 概念的基础,必须在连接时指定,RabbitMQ 默认的 vhost 是 / 。
Broker
表示消息队列服务器实体。
2. Exchange 类型
direct:
处理路由键,需要将一个队列绑定到交换机上,要求该消息与一个特定的路由键完全匹配。这是一个完整的匹配。
topic:
将路由键和某模式进行匹配。此时队列需要绑定一个模式上。符号“#”匹配一个或多个词,符号“*”只能匹配一个词。
fanout
不处理路由键。发送到该交换机上的消息会被广播到与该交换机绑定的所有队列上。
headers
不处理路由键,而是根据发送的消息内容中的headers属性进行匹配。在绑定Queue与Exchange时指定一组键值对;
当消息发送到RabbitMQ时会取到该消息的headers与Exchange绑定时指定的键值对进行匹配;
如果完全匹配则消息会路由到该队列,否则不会路由到该队列。headers属性是一个键值对,可以是Hashtable,键值对的值可以是任何类型。
而fanout,direct,topic 的路由键都需要要字符串形式的
3.常见问题
1).RabbitMQ消息重复消费问题
可以消费端消费时,利用redis加一个消费标志,如果消费过了就不继续
2).RabbitMQ消息丢失问题
a.生产者发送消息时,使用confirm机制
b.broker端设置消息时持久化,设置持久化有两个步骤,第一个是创建queue的时候将其设置为持久化的,这样就可以保证rabbitmq持久化queue的元数据,但是不会持久化queue里的数据;第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时rabbitmq就会将消息持久化到磁盘上去。必须要同时设置这两个持久化才行,rabbitmq哪怕是挂了,再次重启,也会从磁盘上重启恢复queue,恢复这个queue里的数据。
c.消费端用rabbitmq提供的ack机制,关闭rabbitmq自动ack
3.RabbitMQ消息顺序问题
将需要顺序的消息,写到同一个queue里,然后单独指定一个消费者消费这个queue
4.RabbitMQ消息积压问题
如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来一般这个时候,只能操作临时紧急扩容了,具体操作步骤和思路如下:
1)先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉
2)新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量
3)然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue
4)接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据
5)这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据
6)等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息
4.与其他消息队列的区别
(1)RabbitMQ是一个AMQP的开源实现,由以高性能、可伸缩性出名的Erlang写成。RabbitMQ Server适用的OS有:Windows、Linux/Unix和Mac OS X,RabbitMQ官方的Client有Java、.Net/C#和Erlang。
AMQP协议主要有3个组件:
交换器(Exchange):它是发送消息的实体
队列(Queue):它是接收消息的实体
绑定器(Bind):将交换器和队列连接起来,并且封装消息的路由信息
(2)ActiveMQ是一个完全支持JMS 1.1和J2EE 1.4规范的JMS Provider实现。JMS(Java Messaging Service)是Java平台上有关面向消息中间件的技术规范,它便于消息系统中的Java应用程序进行消息交换,并且通过提供标准的产生、发送、接收消息的接口简化企业应用的开发。
JMS消息通常有两种类型:
点对点(Point-to-Point):在点对点的消息系统中,消息分发给一个单独的使用者,点对点消息往往与队列相关联。
发布/订阅(Publish/Subscribe):发布/订阅消息系统支持一个事件驱动模型,消息生产者和消费者都参与消息的传递。该类消息一般与特定的主题关联。
(3)Kafka是一种分布式的,基于发布/订阅的消息系统。Kafka开发语言为Scala,支持跨平台。其设计主要目标如下:
以时间复杂度为O(1)的方式提供消息持久化能力
高吞吐率
支持Kafka Server间的消息分区,及分布式消费,同时保证消息顺序传输
支持离线数据处理和实时数据处理
支持在线水平扩展
更快!单机上万TPS
传统的MQ,消息被消化掉后会被mq删除,而kafka中消息被消化后不会被删除,而是到配置的expire时间后,才删除
传统的MQ,消息的Offset是由MQ维护,而kafka中消息的Offset是由客户端自己维护
分布式,把写入压力均摊到各个节点。可以通过增加节点降低压力
Kafka的优点:
分布式高可扩展。Kafka 集群可以透明的扩展,增加新的服务器进集群;
高性能。Kafka 的性能大大超过传统的ActiveMQ、RabbitMQ等MQ 实现,尤其是Kafka 还支持batch 操作;
容错。Kafka每个Partition的数据都会复制到几台服务器上。当某个Broker故障失效时,ZooKeeper服务将通知生产者和消费者,生产者和消费者转而使用其它Broker。
Kafka的缺点:
重复消息。Kafka 只保证每个消息至少会送达一次,虽然几率很小,但一条消息有可能会被送达多次;
消息乱序。虽然一个Partition 内部的消息是保证有序的,但是如果一个Topic 有多个Partition,Partition 之间的消息送达不保证有序;
复杂性。Kafka需要zookeeper 集群的支持,Topic通常需要人工来创建,部署和维护较一般消息队列成本更高。
(4)Redis做Mq
Redis是一个高性能的key-value数据库,它的出现很大程度补偿了memcached这类key-value存储的不足。虽然它是一个数据库系统,但本身支持MQ功能,完全可以当做一个轻量级的队列服务器使用。Redis开发语言为C,支持OS为Linux。
Redis从2.0版本开始支持发布/订阅指令,发布者调用redis的publish方法往特定的channel发送消息,订阅者在初始化的时候要订阅到该channel,一旦有消息就会立即接收。
redis 消息推送(基于分布式 pub/sub)多用于实时性较高的消息推送,并不保证可靠。其他的mq和kafka保证可靠但有一些延迟(非实时系统没有保证延迟)。redis-pub/sub断电就清空,而使用redis-list作为消息推送虽然有持久化,但是也并非完全可靠不会丢。
(5)RocketMQ
阿里出品,topic 可以达到几百/几千的级别,吞吐量会有较小幅度的下降,这是 RocketMQ 的一大优势,在同等机器下,可以支撑大量的 topic
(5)RabbitMQ与Redis性能对比
性能上,实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;
出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。
总结:
一般的业务场景使用RabbitMQ,不论是实时性和准确性等方面都比较优秀,日志采集、大数据领域使用kafaka,吞吐量很大