ICCV2023 | MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection

翻自    https://arxiv.org/pdf/2308.09421.pdf 

           DeepL Translate: The world's most accurate translator

MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection

Abstract 摘要
        在单目三维检测领域,通常的做法是利用场景几何线索来提高检测器的性能。然而,许多现有作品都明确采用了这些线索,如估计深度图并将其反向投影到三维空间。由于从二维到三维的维度增加,这种显式方法会导致三维表示的稀疏性,从而导致大量信息丢失,尤其是对于远处和被遮挡的物体。为了缓解这一问题,我们提出了 MonoNeRD,这是一种新颖的检测框架,可以推断出密集的三维几何图形和占位情况。具体来说,我们用符号距离函数(SDF)对场景进行建模,从而有助于生成密集的三维表征。我们将这些表示法视为神经辐射场(NeRF),然后采用体积渲染恢复 RGB 图像和深度图。据我们所知,这项研究首次为 M3D 引入了体积渲染技术,并展示了隐式重建技术在基于图像的 3D 感知方面的潜力。在 KITTI-3D 基准和 Waymo 开放数据集上进行的大量实验证明了 MonoNeRD 的有效性。代码可在 https: //github.com/cskkxjk/MonoNeRD 上获取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值