1042: [HAOI2008]硬币购物
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2371 Solved: 1416
[Submit][Status][Discuss]
Description
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。
Input
第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000
Output
每次的方法数
Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
Sample Output
4
题解:
设F[i]为不考虑每种硬币的数量限制的情况下,得到面值i的方案数。则状态转移方程为
F[i]=Sum{F[i-C[k]] | i-C[k]>=0 且 k=1..4}
对于某种硬币ci,超过数量限制的方案数为f(s−(di+1)×ci)
最终方案=总方案(无限制的方案)-1种硬币超限方案+2种硬币超限方案-3种硬币超限方案+4种硬币超限方案
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
LL ans,vis[100000+5];
int c[4],d[4],tot,s;
void dfs(int x,int k,int sum)
{
if(sum<0)
return;
if(x == 4)
{
if(k&1)
ans -= vis[sum];
else ans += vis[sum];
return;
}
dfs(x+1,k+1,sum-(d[x]+1)*c[x]);
dfs(x+1,k,sum);
}
inline int read()
{
int x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
int main()
{
for(int i=0;i<4;i++)
c[i]=read();
tot = read();
vis[0] = 1;
for(int i=0;i<4;i++)
for(int j=c[i];j<=100000;j++)
vis[j] +=vis[j-c[i]];
while(tot--)
{
for(int i=0;i<4;i++)
d[i]=read();
s = read();
ans =0;
dfs(0,0,s);
cout<<ans<<endl;
}
return 0;
}