摘要
本文采用分层地层的假设来近似实际情况下的地层垂向的非均质性,并在此基础上建立了多孔介质中的热传导问题的数学模型,通过对方程的无量纲化及Laplace 变换,给出了Laplace 空间上的油气井在注入及生产情况下方程的解。最后将Laplace 空间的解解析反演到实空间上。
1 前言
当井筒中有流体注入或有流体采出时,周围地层与流体之间就存在温度差,使得流体与地层的温度重新分布。在石油的勘探与开发中,了解井筒中流体温度随井深、时间、产量的变化关系是很重要的(详见http://www.successly.com)。例如如果给出井筒温度与流量的关系,那么,就可以利用井筒温度来反求流体产量;给出井筒温度与时间的关系,就可以利用井筒温度反求地层的热力学参数等。
50 年代以来, ,就有一些学者研究多孔介质热传导问题[1 ,2 ] ,其中Ramey[3]在井筒传热方面的研究最为经典,他引起了综合传热系数,并给出了综合传热系数的表达式,但Ramey 的研究采用了过多的假设,这使得Ramey 的井筒瞬时传热导问题的解仅适合时间较大时的情况。
由于多孔介质中的热传导问题非常复杂,对井筒或地层传热问题研究最多的是数值解[4 ,5] ,因为数值解可考虑许多复杂的问题(如地层的热力学参数的非均质性等) ,但数值模拟往往过于复杂,也需要高性能的计算机,一般人也很难掌握。在实际的应用中,解析解更利于人们对问题本质的了解。本文正是从这一目的出发,根据热传导问题的性质,采用较符合实际的假设(将地层分成多层,且地层热力学参数在每个小层中为常数) ,给出地层热传导方程及井筒中的流体流动方程。对方程无量纲化后,给出无量纲方程的解。
2 数学模型及其解
考虑多层的井筒瞬时热传导问题的温度分布如图1、图2 所示,井筒中的流体通过对流传递热量,然后通过热传导进入地层,地层是由n 个不同的热力学及物理性质的多孔介质层组成。整个系数由井筒区、热表皮区(包括套管、环空、水泥环等) 及地层三部分组成。根据对问题的研究,本文采用如下的近似及假设:
图1