python 随机森林参数说明

本文介绍了Python中Sklearn库的RandomForestClassifier参数,包括n_estimators(树的数量)、criterion(分裂标准,如基尼不纯度或信息熵)、max_features(用于分割的最佳特征数量)、max_depth(树的最大深度)、min_samples_split和min_samples_leaf(拆分和叶子节点的最小样本数)、以及bootstrap(是否使用Bootstrap样本构建树)等关键参数。文章旨在帮助初学者理解随机森林的参数设置。
摘要由CSDN通过智能技术生成

写在前面的话:本人刚刚学sklearn,很多参数也不是很懂,英语又比较low,只能求助google翻译,若有不对的地方,请大佬指出来。

Sklearn.ensemble.RandomForstClassifier 参数说明

Sklearn.ensemble.RandomForstClassifier(n_estimators=10criterion=’gini’max_depth=None,min_samples_split=2min_samples_leaf=1min_weight_fraction_leaf=0.0max_features=’auto’max_leaf_nodes=None,min_impurity_decrease=0.0min_impurity_split=Nonebootstrap=Trueoob_score=Falsen_jobs=1,random_state=Noneverbose=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值