// 问题描述
// 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
// 输入格式
// 输入包含两个正整数,K和L。
// 输出格式
// 输出一个整数,表示答案对1000000007取模后的值。
// 样例输入
// 4 2
// 样例输出
// 7
#include "stdio.h"
#include "cstring"
using namespace std;
int dp[105][105];
int main(){
int K, L;
scanf ("%d%d", &K, &L);
memset(dp,0,sizeof(dp));
for (int i = 0; i < K; i++){
dp[0][i] = 1;
}
for (int i = 1; i < L; i++){
for (int j = 0; j < K; j++){
for (int u = 0; u < K; u++){
if (u == j - 1 || u == j + 1) continue;
dp[i][j] = (dp[i][j] + dp[i-1][u]) % 1000000007;
}
}
}
int sum = 0;
for (int i = 1; i < K; i++){
sum = (sum + dp[L-1][i]) % 1000000007;
}
printf("%d\n",sum);
return 0;
}
主要是动态规划方程的写出 总体不难。