蓝桥杯 算法训练 K好数

// 问题描述
// 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

// 输入格式
// 输入包含两个正整数,K和L。

// 输出格式
// 输出一个整数,表示答案对1000000007取模后的值。
// 样例输入
// 4 2
// 样例输出
// 7

#include "stdio.h"
#include "cstring"
using namespace std;

int dp[105][105];

int main(){
    int K, L;
    scanf ("%d%d", &K, &L);
    memset(dp,0,sizeof(dp));

    for (int i = 0; i < K; i++){
        dp[0][i] = 1;
    }

    for (int i = 1; i < L; i++){
        for (int j = 0; j < K; j++){
            for (int u = 0; u < K; u++){
                if (u == j - 1 || u == j + 1)   continue;
                dp[i][j] = (dp[i][j] + dp[i-1][u]) % 1000000007;
            }
        }
    }
    int sum = 0;

    for (int i = 1; i < K; i++){
        sum = (sum + dp[L-1][i]) % 1000000007;
    }

    printf("%d\n",sum);
    return 0;
}

主要是动态规划方程的写出 总体不难。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值