首先声明:子集和问题可以用动态规划问题解决,即01背包问题的解法即可。在这里我们采用下构造树的问题。
问题:
给定n个正整数{ wi|i=0...n}和一个正整数m,在这n个正整数中找出一个子集,使得子集中的正整数之和等于m。
解的形式:
设定一个n元组(x0,x1,...xn-1),如果wi包含在这个子集中,x是解向量,xi就等于1,反之等于0.
X数组是解向量,t=∑(1,..,k-1)Wi*Xi, r=∑(k,..,n)Wi (说明:t就是前k-1个数选择之后的和,r表示剩余n-k+1个数的和)
若t+Wk+W(k+1)<=M,则Xk=true,递归左儿子(X1,X2,..,X(k-1),1);否则剪枝;
若t+r-Wk>=M && t+W(k+1)<=M,则置Xk=0,递归右儿子(X1,X2,..,X(k-1),0);否则剪枝;
本题中W数组就是(1,2,..,n),所以直接用k代替WK值。