LDL组会分享

Label Enhancement by Maintaining Positive and Negative Label Relation

method

基于保持正负标签关系的LE算法,该算法包含了一种新颖的排序损失,可以根据不同的排序误差产生不同的惩罚。

motivation

大多数LE算法在增强过程中忽略了维护正、负标签的排序关系,从而导致了大量的正、负标签排序误差。
某些LE算法使用包含最小二乘损失函数(LS) L ( θ ^ ) = ∑ i = 1 n ∥ d ^ i − l i ∥ \mathcal{L}(\hat{\theta})=\sum_{i=1}^n\Big\lVert \hat{d}_i-l_i\Big\rVert L(θ^)=i=1nd^ili,可以保证拟合度。但是,只考虑拟合程度是非常片面和不合理的。
在这里插入图片描述
用P-N排序错误来表示正负标签排序错误

output model

特征空间与标签空间线性相关
D ^ = X W + b \hat{D}=XW+b D^=XW+b
W W W是权重矩阵, W ^ = [ W ; b ] , ϕ ( x i ) = [ x i , 1 ] \hat{W}=[W;b],\phi(x_i)=[x_i,1] W^=[W;b],ϕ(xi)=[xi,1]

目标函数

min ⁡ W ^ = L ( W ^ ) + λ R ( W ^ ) s . t . D ^ ≥ 0 n × c \min_{\hat{W}}=L (\hat{W})+\lambda R(\hat{W}) \\ s.t. \hat{D}\ge0_{n\times c} W^min=L(W^)+λR(W^)s.t.D^0n×c
L L L是损失函数, R R R是用来约束正负标签之间排序关系的函数, 0 n × c 0_{n\times c} 0n×c是一个零矩阵

损失函数

L = ∑ i = 1 n ∥ d ^ i − l i ∥ 2 L=\sum_{i=1}^n\lVert\hat{d}_i-l_i\rVert^2 L=i=1nd^ili2

成对排序损失

每个正标签对应的标签分布值应大于任何负标签对应的标签分布值
d ^ i p > d ^ i m ∀ p ∈ Y i + , m ∈ Y i − \hat{d}_i^p>\hat{d}_i^m \quad \forall p\in Y_i^+,m\in Y_i^- d^ip>d^impYi+,mYi

R h i n = 1 N ∑ i = 1 N ∑ p ∈ Y i + ∑ m ∈ Y i − m a x ( 0 , α + d ^ i m − d ^ i p ) R_{hin}=\frac{1}{N}\sum_{i=1}^N\sum_{p\in Y_i^+}\sum_{m\in Y_i^- }max(0,\alpha+\hat{d}_i^m-\hat{d}_i^p) Rhin=N1i=1NpYi+mYimax(0,α+d^imd^ip)
α \alpha α是决定边际的超参数
hinge function

上面的铰链函数形式是非光滑的,使用指数函数和对数函数来平滑逼近

R l s e = 1 N ∑ i = 1 N log ⁡ ( 1 + ∑ p ∈ Y i + ∑ m ∈ Y i − exp ⁡ ( d ^ i m − d ^ i p ) ) R_{lse}=\frac{1}{N}\sum_{i=1}^N \log(1+\sum_{p\in Y_i^+}\sum_{m\in Y_i^- }\exp(\hat{d}_i^m-\hat{d}_i^p)) Rlse=N1i=1Nlog(1+pYi+mYiexp(d^imd^ip))

四种不同的P-N排序错误。

在这里插入图片描述

为了使不同d额P-N排名错误受到轻重不同惩罚,使用 ∣ d i p − d i m ∣ ⋅ ∣ d ^ i p − d ^ i m ∣ |d_i^p-d_i^m |\cdot |\hat{d}_i^p-\hat{d}_i^m| dipdimd^ipd^im来衡量惩罚

局部标签相关性

因为真实标签分布未知,使用标签相关性来反映两个标签的真实标签分布值之间的差值,同时因为成对排序损失函数是特定于一个实例的,为了减少误差,使用局部标签相关性。
[ S g ] i j = l g , i , : l g , j , : T ∥ l g , i , : ∥ ∥ l g , j , : ∥ [S_g]_{ij}=\frac{l_{g,i,:}l^T_{g,j,:}}{\lVert l_{g,i,:}\rVert \lVert l_{g,j,:}\rVert} [Sg]ij=lg,i,:lg,j,:lg,i,:lg,j,:T
l g , i , : l_{g,i,:} lg,i,:表示 L g L_g Lg的第i列, L g L_g Lg是集群 X g X_g Xg的逻辑标签集。

R l s e = 1 N ∑ i = 1 N log ⁡ ( 1 + ∑ p ∈ Y i + ∑ m ∈ Y i − exp ⁡ ( − [ S g ] p m ) exp ⁡ ( d ^ i m − d ^ i p ) ) R_{lse}=\frac{1}{N}\sum_{i=1}^N \log(1+\sum_{p\in Y_i^+}\sum_{m\in Y_i^- }\exp(-[S_g]_{pm})\exp(\hat{d}_i^m-\hat{d}_i^p)) Rlse=N1i=1Nlog(1+pYi+mYiexp([Sg]pm)exp(d^imd^ip))

最终的目标函数

min ⁡ W ^ = ∑ i = 1 n ∥ d ^ i − l i ∥ 2 + λ 1 N ∑ i = 1 N log ⁡ ( 1 + ∑ p ∈ Y i + ∑ m ∈ Y i − exp ⁡ ( − [ S g ] p m ) exp ⁡ ( d ^ i m − d ^ i p ) ) s . t . D ^ ≥ 0 n × c \min_{\hat{W}}=\sum_{i=1}^n\lVert\hat{d}_i-l_i\rVert^2+\lambda \frac{1}{N}\sum_{i=1}^N \log(1+\sum_{p\in Y_i^+}\sum_{m\in Y_i^- }\exp(-[S_g]_{pm})\exp(\hat{d}_i^m-\hat{d}_i^p))\\ s.t. \hat{D}\ge0_{n\times c} W^min=i=1nd^ili2+λN1i=1Nlog(1+pYi+mYiexp([Sg]pm)exp(d^imd^ip))s.t.D^0n×c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值