(1)conda
conda是适用于任何语言的软件包、依赖项和环境管理系统--包括Python,R,Ruby,Lua,Scala,Java,JavaScript,C / C ++,FORTRAN等。
对于python而言,conda是一个包管理(可以用来管理Python的第三方包)和环境管理(能够允许用户使用不同版本Python,并灵活切换)工具。
==> conda能够管理不同的python环境(使用命令行创建python环境),使得各个版本之间相互隔离。
(2) Anaconda:基于conda的管理工具集合,它包含了conda、某一个版本的Python、一批第三方库等。
==> conda与anaconda区别:
conda推荐使用命令行来进行操作,Anaconda提供了图形界面。
Anaconda是一个包含了Conda包管理器的大型发行版,专门为数据科学、机器学习和大数据处理设计。它预装了大量的科学计算和数据科学包(如numpy、pandas、scipy、scikit-learn、jupyter等)。Anaconda安装包比较大,因为它包含了许多预装的包和工具。安装Anaconda可以让用户快速开始数据科学和机器学习的工作,而不需要单独安装每个包。
Miniconda是一个轻量级的Conda安装包,只包含Conda和其依赖的Python。它不包含其他预装的库和工具。
==> conda与pip的区别:
==>什么情况下使用conda?
① 创建和管理虚拟环境时。
② Conda非常适合安装大型的科学计算和数据科学包(如numpy、pandas、scipy、scikit-learn、tensorflow等),因为它们可能有复杂的依赖关系和编译要求。
==>什么情况下使用pip?
简单包的安装。
ps: 通常情况下,创建环境时使用Conda,安装包时使用Pip:
(3)miniforge
Miniforge是Conda的一种轻量级发行版,类似于Miniconda,但有一些关键的区别。
Miniforge的默认包源是Conda-forge。Conda-forge是一个由社区驱动的包仓库,提供了大量的高质量包。
Miniforge仅包含Conda包管理器和Python,用户可以根据需要从Conda-forge安装其他包。
==> anaconda与miniforge的关系:
Miniforge:一个轻量级的Conda发行版,默认使用Conda-forge包仓库,适合需要从Conda-forge安装包的用户。(仅包含conda及其依赖)
Anaconda:一个包含大量预装科学计算包的Conda发行版,适合快速开始数据科学和机器学习的用户。(包含了conda及其依赖,以及其他常见的包pandas/numpy等)
==> 如何使用miniforge创建虚拟环境?
详见Miniforge的介绍,安装和使用_miniforge创建环境-CSDN博客
(4) 虚拟环境
设置虚拟环境的原因:在cmd中输入pip insatll 包名,安装的包在全局系统中都可以使用。不同的项目可能需要相同包不同版本的package,因此就出现了包冲突。然而,一个系统不能包含两个不同版本的库,所以需要使用虚拟环境。
设置虚拟环境的教程详见:【Python基础】PyCharm配置Python虚拟环境详解_pycharm虚拟环境设置-CSDN博客
在虚拟环境中安装包的教程详见【Python基础】PyCharm配置Python虚拟环境详解_pycharm虚拟环境设置-CSDN博客中2.3节。