POJ-2186(有向图强连通子图)

题目:http://poj.org/problem?id=2186

今天学习了求有向图强连通子图的tarjan算法,思想实际上类似求无向图的割顶,因为同样用到了low函数,但割顶的low函数准则为对于非根节点u,如果存在孩子节点v使得low[v]>=low[u]则u为割顶;而强连通子图的low函数准则为对于节点u,如果所有尚未确定属于哪个SCC的子孙的low函数都不大于low[u],则u及其尚未确定属于哪个SCC的子孙同属一个SCC


#include <cstdio>
#include <vector>
#include <stack>
using namespace std;
#define MAX     10001

int N, M, dfsClock, pre[MAX], sccCnt, scc[MAX];
bool out[MAX];
vector<int> neighbour[MAX];
stack<int> st;

int dfs(int x)
{
    int lowx, y, lowy;
    const vector<int>& v = neighbour[x];
    
    lowx = pre[x] = ++dfsClock;
    st.push(x);
    for(int i = 0, n = v.size(); i < n; ++i){
        y = v[i];
        if(!pre[y]){
            lowy = dfs(y);
            lowx = min(lowx, lowy);
        }
        else if(!scc[y]){
            lowx = min(lowx, pre[y]);
        }
    }
    if(lowx == pre[x]){
        ++sccCnt;
        while(true){
            y = st.top(); st.pop();
            scc[y] = sccCnt;
//            printf("scc[%d] = %d\n", y, scc[y]);
            if(y == x) break;
        }
    }
    return lowx;
}
void findScc()
{
    memset(pre + 1, 0, N << 2);
    memset(scc + 1, 0, N << 2);
    dfsClock = sccCnt = 0;
    for(int i = 1; i <= N; ++i){
        if(!pre[i]) dfs(i);
    }
}
void solve()
{
     findScc();
     memset(out + 1, false, N);
     for(int i = 1; i <= N; ++i){
         int ccno = scc[i];
         const vector<int>& v = neighbour[i];
         for(int j = 0, n = v.size(); j < n; ++j){
             if(scc[v[j]] != ccno){
                 out[ccno] = true;
                 break;
             }
         }
     }
     int noout = 0;
     for(int i = 1; i <= sccCnt; ++i){
         if(!out[i]){
             if(noout){
                 puts("0");
                 return;
             }
             else noout = i;
         }
     }
     int cnt = 0;
     for(int i = 1; i <= N; ++i){
         if(scc[i] == noout) ++cnt;
     }
     printf("%d\n", cnt);
}
bool input()
{
    if(2 != scanf("%d%d", &N, &M)) return false;
    
    int i, x, y;
    for(i = 1; i <= N; ++i) neighbour[i].clear();
    for(i = 0; i < M; ++i){
        scanf("%d%d", &x, &y);
        neighbour[x].push_back(y);
    }
    return true;
}

int main()
{
//    freopen("in.txt", "r", stdin);
//    freopen("out.txt", "w", stdout);
    while(input()) solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值