CarrerCup-机器人走二维网格

本文介绍了机器人在二维网格中移动的问题,从起点(1,1)到终点(m,n)的最小步数。机器人有两种移动方式:向下或向右。通过分析移动规则,可以推导出到达每个位置的条件,并据此确定无法到达的位置。最后提出了逆向推导的方法来计算到达(m,n)所需的最少步骤。" 105689121,8333573,使用代码创建网页爱心动画,"['CSS', 'JS', '前端开发', 'HTML', 'Web']
摘要由CSDN通过智能技术生成

题目连接:http://www.careercup.com/question?id=5697293959299072

题目原文:

A robot has to move in a grid which is in the form of a matrix. It can go to 
1.) A(i,j)--> A(i+j,j) (Down) 
2.) A(i,j)--> A(i,i+j) (Right) 


Given it starts at (1,1) and it has to go to A(m,n), find the minimum number of STEPS it has to take to get to (m,n) and write 
public static int minSteps(int m,int n) 

For instance to go from (1,1) to m=3 and n=2 it has to take (1, 1) -> (1, 2) -> (3, 2) i.e. 2 steps

题目翻译:一个机器人在以个二维网格中移动,它可以以两种方式移动:

(1) 从(i, j)走到(i+j, j)

(2) 从(i, j)走到(i, i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值