一、Serverless是啥
自从互联网兴起以来,Server就成了网络的核心部件。所以围绕Server的生意圈,也发展得如火如荼。
从最早的电信托管,到虚拟机,到现在的Serverless,形成了几大阵容:
1、IaaS(基础设施即服务:Infrastructure as a Service)
2、PaaS(平台即服务:Platform as a Service)
3、SaaS(软件即服务:Software as a Service)
IaaS是包硬不包软,面对集成商,PaaS是包硬包软不包工,面对开发者,SaaS是全包,面对消费者。
三大阵营都在不断演进中,互相取长补短,甚至模糊了彼此的界限。
PaaS最新的发展就是:
1、BaaS(后端即服务:Backend as a Service)
2、Faas(函数即服务:Functions as a Service)
这两种架构被称为Severless。
BaaS与FaaS这两种架构被称为Severless,并非对开发者而言,是对服务商而言,没有一直运行的定制服务存在,不占用服务商的计算资源。同共享单车有些类似,是计算机分时租赁方式,按次按时计价。
BaaS并不存放客户代码,只提供通用的逻辑,产品的逻辑都需要在富客户端完成。这些通用的逻辑为所有客户共享,因而不浪费服务商的计算资源,也就可以做到按API调用次数计算费用。
以前叫我们把二层的富客户端都改成三层瘦客户端,现在搞个共享数据库,又叫我们改成富客户端。横竖赚钱。
而FaaS存放客户代码,当访问时,调入相关资源,开始运行,运行完成后,卸载所有开销。
嘶~~~,听起来耳熟。靠,这不就是PHP吗?!我是不是发现了什么~~
二、Serverless凭啥
看来BaaS和FaaS都是新瓶装旧酒,那么Serverless凭啥流行,又是不是未来?
Facebook 于2013年花费了 8500 万美元收购了主流的BaaS平台 Parse 。由于 Parse 一直以来未能为 Facebook 提供预期的营收,Facebook 决定一年后将其正式关闭,并将其代码开源。Facebook这不差钱的行为,直接为整个行业蒙上了阴影。可以说直接逼死了某些跟风者。
搭个共享数据库赚钱的想法基本破灭后,行业都纷纷压宝FaaS。那么FaaS的前景如何?
虽然FaaS是BaaS的“升级版”,并且与流行的微服务架构相吻合。但是无法改变它有强制所有程序按PHP方式运行这样一个可怕的设定。而这个无奈的设定所解决的是导致先行者AppEngine举步维艰的病根,那就是大量进程占用服务商过多的资源而不怎么赚钱。所以FaaS这个扭曲版AppEngine对于服务商来说是一剂良药,但是未必会是行业的未来。
这些年随着Docker平台的发展,启停一个容器的成本已经接近于启停一个进程。将AppEngine平台上的侦听进程都去掉,用一个统一的WebServer来侦听路由,当访问到来时,启动容器,运行,停止容器。这和PHP的做法一模一样,不过是把PHP.exe换成了Docker容器罢了。同一个思路,换一个环境,马上从落后变成了先进。可以你想像,FaaS是降低成本的利器,也一定会占有一部分低端市场。
但是,PHP也没有像FaaS一样强制要求所有服务达到函数这个级别,一步到位的确有点匪夷所思。函数也非FaaS最好的包装形式,不如像PHP直接对应到一个文件上。在我看来,现有FaaS平台的行为模式,只适合推广PHP,能够与PHP生态很好地对接,而其它语言则有不可调和的矛盾。
看了一下开源框架Fission的源码,想出一个兼容其它语言的方案,以Python语言为例。
要求Flask程序实现2个接口,原有的程序不加任何修改即可在FaaS框架下运行了,/register接口载入所有Route,并返回所有绑定规则,FaaS框架只需要把Route表合并就可以一次性创建所有Route。不必要一条一条调用fission function create与fission route add了。Http 请求来时调用/specialize接口,根据endpoint(即函数名)载入代码,实现FaaS功能。把框架接口开放给程序,能够实现最大的兼容现有框架,如果不放心,可以调用/specialize?endpoint=echo&echo=hello,来验证程序是否支持FaaS平台即可。
from flask import Flask, request
app = Flask(__name__)
userfunc = None
@app.route('/register', methods=['POST'])
def register():
# 引入所有Routes,并返回所有Rules
from .main import main as main_blueprint
app.register_blueprint(main_blueprint)
return jsonify(app.url_map._rules_by_endpoint)
@app.route('/specialize', methods=['POST'])
def load():
# 特化载入,只载入单个endpoint
body = request.get_json()
name = body['endpoint']
global userfunc
userfunc = imp.load_source(name)
return ""
三、Serverless有啥
Serverless平台一般分为如下三类:
1. 公有云Severless平台:
A. AWS Lambda、B. Microsoft Azure Functions、
C. Google Cloud Functions、D. Webtask、E. Syncano
2. 私有云Severless框架:
A. Fission (Kubernetes)、B. Funktion (Kubernetes)、
C. Kubeless (Kubernetes)、D. Gestalt (DC/OS)、
E. IBM OpenWhisk (Docker)、F. Iron Functions (Docker,Swarm, Kubernetes)
3.Serverless平台的包装框架:
A. Serverless(Node,大多数平台)、B. Apex(Go,AWS)
C. Zappa(Python,AWS)、D. Chalice(Python,AWS)
E. Claudia.js(Node,AWS)F. Gordon (Python,AWS)
四、Serverless干啥
1、AWS Lambda的包装框架Zappa,可以使用Flask,Django等框架。
功能看下图可知:
这是一张动图:http://t.cn/Ai9WUPdT
(可复制到浏览器查看)
2、Fission是一个Serverless开源框架。可以看看它都干了啥。
Fission是基于Kubernetes的,而Kubernetes是基于Docker的容器集群管理系统。
Kubernetes的内容太丰富,简单说来,实体对象有若干节点(Node)包含若干Pod,Pod又包含若干容器(Container),通过Pod上的标签(Label)组合成服务(Service)。
Master包含如下组件:
apiserver:作为kubernetes系统的入口,封装了核心对象的增删改查操作。它维护的REST对象将持久化到etcd。
etcd:分布式强一致性的key/value存储
scheduler:负责集群的资源调度,为新建的pod分配机器。
controller-manager:负责执行各种控制器,目前有两类:
endpoint-controller:定期关联service和pod(关联信息由endpoint对象维护),保证service到pod的映射总是最新的。
replication-controller:定期关联replicationController和pod,保证replicationController定义的复制数量与实际运行pod的数量总是一致的。
Slave Node(称为Minion)包含如下组件:
kubelet:负责管控docker容器,如启动/停止、监控运行状态等。它会定期从etcd获取分配到本机的pod,并根据pod信息启动或停止相应的容器。同时,它也会接收apiserver的HTTP请求,汇报pod的运行状态。
proxy:负责为pod提供代理。它会定期从etcd获取所有的service,并根据service信息创建代理。当某个客户pod要访问其他pod时,访问请求会经过本机proxy做转发。
docker:docker容器引擎
Fission简单说来,就是一个Web应用,Go语言编写,使用gorilla框架。不过它的模板引擎替换成了Kubernetes中的Service。使用k8s.io/client-go/kubernetes接口来操控(k8s就是Kubernetes)。
参考文档:
《采用Serverless架构》:http://cloud.51cto.com/art/201703/534748.htm
《Kubernetes初探》:https://blog.csdn.net/zhangjun2915/article/details/40598151
《十分钟带你理解Kubernetes核心概念》http://www.dockone.io/article/932
《Kubernetes权威指南》
版权申明:内容来源网络,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢。
架构文摘
ID:ArchDigest
互联网应用架构丨架构技术丨大型网站丨大数据
更多精彩文章,请点击下方:阅读原文