越努力,越幸运

微信公众号:JoonWhee。专注于Java原创知识交流,优秀技术文章、职场人生、面试经验分享。...

排序算法:快速排序

概述

手写排序算法几乎是程序员面试必问的题目,大多数人都会选择写冒泡排序,如果此时你写的是其他改进过的排序算法,相信会让面试官眼前一亮。本文将介绍常见的排序算法中的“快速排序”。

 

基本思想

快速排序(QuickSort)是对冒泡排序的一种改进。快速排序由C. A. R. Hoare在1962年提出。它的基本思想是:

  1. 从要排序的数据中取一个数为“基准数”。
  2. 通过一趟排序将要排序的数据分割成独立的两部分,其中左边的数据都比“基准数”小,右边的数据都比“基准数”大。
  3. 然后再按步骤2对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

该思想可以概括为:挖坑填数 + 分治法。

 

分治法

分治,字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。在计算机科学中,分治法就是运用分治思想的一种很重要的算法。分治法是很多高效算法的基础,如快速排序,归并排序,傅立叶变换(快速傅立叶变换)等等。

 

例子

下面通过一个例子来看看快速排序是怎么工作的,例子中表格中红色的字体为需要填的坑,绿色的字体为已经移动过的数据。

1.刚开始,i 和 j 分别指向数组头和数组尾,即 i = 0,j = 9,基准数取第一个数,即index = array[i] = array[0] = 23。

此时,array[0]的值已经存在了index,因此array[0]的位置就好像被挖了个坑,可以填充一个数。

因此,我们从位置 j 开始向左寻找比index小的数,当 j = 8 时,符合条件,于是我们将array[8]的值填到array[0] ,即将9填入array[0],并将 i 向右移动一个位置,即 i++。从位置 j 向左寻找比index小的数,并在寻找到后填入坑中,用代码表示如下。

此时,array数组如下图。

2.因为array[0]的坑被array[8]填了,于是array[8]的位置又成了一个新的坑。此时我们从位置 i 开始向右寻找比index大的数,当 i = 2 时符合条件,于是我们将array[2]的值填到array[8] ,即将37填入array[8],并将 j 向左移动一个位置,即 j--。从位置 i 向右寻找比index大的数,并在寻找到后填入坑中,用代码表示如下(跟上面相似)。

此时,array数组如下图。

3.同样的,array[8]的坑被array[2]填了,于是array[2]的位置又成了一个新的坑。此时我们从位置 j 开始向左寻找比index小的数,当 j = 5 时符合条件,于是我们将array[5]的值填到array[2] ,即将21填入array[2],并将 i 向右移动一个位置,即 i++,此时array数组如下图。

4.同样的,array[2]的坑被array[5]填了,于是array[5]的位置又成了一个新的坑。此时我们从位置 i 开始向右寻找比index大的数,当 i = 3 时符合条件,于是我们将array[3]的值填到array[5] ,即将89填入array[5],并将 j 向左移动一个位置,即 j--,此时array数组如下图。

5.同样的,array[5]的坑被array[3]填了,于是array[3]的位置又成了一个新的坑。此时我们从位置 j 开始向左寻找比index小的数,当 j = 4 时符合条件,于是我们将array[4]的值填到array[3] ,即将2填入array[3],并将 i 向右移动一个位置,即 i++,此时array数组如下图。

6.此时,我们发现 i = j,结束遍历,并将index填入array[4],即将23填入array[4],此时array数组如下图。此时,array[4]左边的数据全比array[4]小,而array[4]右边的数据全比array[4]大。

7.接下去,我们只需要对array[4]两边的数据分别在进行上面的操作即可(分治法),如下图。

分治的代码可以写成如下:

quickSort(array, low, i - 1); // 递归调用,分治
quickSort(array, i + 1, high);     // 递归调用,分治

 

完整流程

最后我们通过一个视频(找不到动图,僵硬)来看下快速排序的完整过程。视频中的红线为当前的基准数。CSDN放不了视频,想看视频的关注公众号,同名文章里有。

 

整合

根据以上步骤,稍微整理一下,可以得出快速排序的代码如下:

 

时间复杂度

最好情况的时间复杂度为O(nlogn),过程比较复杂,就不在此赘述。

最差情况下每一次取到的数(基准数)都是当前要比较的数中的最大/最小值,在这种情况下,每次都只能得到比上一次少1个数的子序列(即要么全比基准数大,要么全比基准小),此时相当于一个冒泡排序,比较的次数 = (n - 1) + (n - 2) + ... + 2 + 1 = (n - 1) * n / 2,此时的时间复杂度为:O(n^2)。最差情况一般出现在:待排序的数据本身已经是正序或反序排好了。

 

使用场景

基本上在任何需要排序的场景都可以使用快速排序。虽然快速排序的最坏情况时间复杂度为O(n^2),但是由于基本不会出现,因此可以放心的使用快速排序。在本人的电脑测试,100万的随机数字,快速排序大约耗时120毫秒。

 

最后

理解了快速排序的基本思想后,手写快速排序算法就变得没那么难了,只需要多练习几遍,相信在面试中手写快速排序算法便是小菜一碟。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。微信公众号:JoonWhee,欢迎关注。 https://blog.csdn.net/v123411739/article/details/80071521
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭