凸优化
文章平均质量分 95
分享学习凸优化过程中记录的各种知识点
格兰芬多_未名
找到自己的目标和方向是一件很幸福的事
展开
-
凸优化的对偶理论【对偶问题、互补松弛条件、KKT条件】
对偶理论总结 :拉格朗日函数、对偶问题、弱对偶定理 、强对偶性 、互补松弛条件、KKT条件.原创 2024-05-16 17:30:38 · 2226 阅读 · 2 评论 -
线性规划单纯形法【推导+实例】
单纯形法是一种用于解决线性规划问题的经典算法。线性规划是一种优化问题,其目标是在给定约束条件下,找到使得某一线性目标函数取得最大值或最小值的变量取值。原创 2024-03-19 11:31:43 · 1991 阅读 · 0 评论 -
近似点梯度法【Proximal Gradient Method】
近似点梯度算法.它能克服次梯度算法的缺点,充分利用光滑部分的信息,并在迭代过程中显式地保证解的结构,从而能够达到和求解光滑问题的梯度算法相近的收敛速度.原创 2024-01-09 22:03:14 · 2597 阅读 · 0 评论 -
牛顿法和拟牛顿法介绍
牛顿类算法就是利用二阶导数信息来构造迭代格式的算法.由于利用的信息变多,牛顿法的实际表现可以远好于梯度法,但是它对函数 $f(x)$ 的要求也相应变高.原创 2024-01-04 15:03:54 · 1905 阅读 · 1 评论 -
次梯度算法介绍
在实际应用中经常会遇到不可微的函数,对于这类函数我们无法在每个点处求出梯度,但往往它们的最优值都是在不可微点处取到的. 次梯度算法不用知道每个点的梯度,转而求其次梯度,能处理函数不可微的情形.原创 2024-01-03 21:06:12 · 2379 阅读 · 1 评论 -
锥规划问题存储格式【CBF格式简介】
CBF(Conic Benchmark Format),这是一种文件存储格式,整合了混合整数变量在混合圆锥(包括线性锥、二阶锥、半定锥、指数锥和幂锥)上的优化问题实例。该格式在设计时考虑了锥规划问题的基准库,因此侧重于紧凑且易于解析的表示。原创 2023-11-07 19:17:27 · 984 阅读 · 0 评论