22、集成学习方法:梯度提升与随机森林详解

集成学习方法:梯度提升与随机森林详解

1. 梯度提升的参数设置

梯度提升(Gradient Boosting)在集成学习中是一种强大的技术,它与装袋(Bagging)和随机森林(Random Forests)不同,不仅可以减少方差,还能减少偏差。在梯度提升中,有几个关键的参数设置需要理解。

1.1 树的深度参数

梯度提升在训练单个树时,树的深度参数设置很重要。它通常在变量之间存在显著交互时才需要较大的树深度。实际上,梯度提升使用树桩(深度为 1 的树)往往也能取得与更深树相近的低均方误差(MSE)。树深度的增加对性能的提升可以作为衡量问题中变量交互程度的一个指标。

1.2 步长参数 eps

变量 eps 是一个步长控制参数,类似于优化问题中的步长。梯度提升采用梯度下降步骤,如果步长太大,优化过程可能会发散而不是收敛;如果步长太小,过程可能需要太多迭代。后续会讨论如何调整这个步长参数。

1.3 残差

residuals 变量表示预测误差,即观测值减去预测值。梯度提升算法会对标签的预测进行一系列细化,在每一步都会重新计算残差。在过程开始时,梯度提升将预测初始化为空(或零)值,使得残差等于观测标签。

以下是相关代码示例:

# 代码示例中的部分参数设置
eps = 0.1  # 步长参数
treeDepth = 5  # 树的深度
residuals = list(yTrain)  # 初始化残差为训练标签
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值