一个人的旅行
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 36162 Accepted Submission(s): 12326
Problem Description
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
Output
输出草儿能去某个喜欢的城市的最短时间。
Sample Input
6 2 3 1 3 5 1 4 7 2 8 12 3 8 4 4 9 12 9 10 2 1 2 8 9 10
Sample Output
9
思路:将所有起点加入队列,利用spfa进行迭代即可。
AC代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
const int MAXN = 1005;
const int INF = 0x3f3f3f3f;
struct Edge {
int to, w;
};
vector<Edge> arc[MAXN];
int T, S, D;
int src[MAXN];
int des[MAXN];
bool vis[MAXN];
int d[MAXN];
int n;
void spfa() {
for (int i = 1; i <= n; i++) {
d[i] = INF;
}
memset(vis, false, sizeof(vis));
queue<int> que;
for (int i = 0; i < S; i++) {
d[src[i]] = 0;
que.push(src[i]);
}
while (!que.empty()) {
int u = que.front(); que.pop();
vis[u] = false;
for (int i = 0; i < arc[u].size(); i++) {
Edge e = arc[u][i];
if (d[e.to] > d[u] + e.w) {
d[e.to] = d[u] + e.w;
if (!vis[e.to]) {
vis[e.to] = true;
que.push(e.to);
}
}
}
}
}
int main() {
while (scanf("%d%d%d", &T, &S, &D) != EOF) {
for (int i = 1; i <= n; i++) {
arc[i].clear();
}
n = 0;
for (int i = 0; i < T; i++) {
int a, b, time;
scanf("%d%d%d", &a, &b, &time);
arc[a].push_back((Edge) {b, time});
arc[b].push_back((Edge) {a, time});
n = max(n, max(a, b));
}
for (int i = 0; i < S; i++) {
scanf("%d", &src[i]);
}
for (int j = 0; j < D; j++) {
scanf("%d", &des[j]);
}
spfa();
int mn = INF;
for (int i = 0; i < D; i++) {
mn = min(d[des[i]], mn);
}
printf("%d\n", mn);
}
return 0;
}