算法复杂度的介绍,见百科: http://baike.baidu.com/view/7527.htm 时间复杂度 时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 计算方法 1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n)) 分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。 2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,
关于程序代码的时间复杂度
最新推荐文章于 2024-10-01 22:40:52 发布
本文介绍了算法的时间复杂度,包括时间频度的概念、计算方法和常见时间复杂度的分类。通过示例解释了如何分析算法的时间复杂度,并指出在算法分析中通常忽略系数,重点关注问题规模n的影响。
摘要由CSDN通过智能技术生成