- 博客(163)
- 收藏
- 关注
原创 最全面的小麦病害数据集YOLO标注数据集进行检测
小麦病害检测的研究背景主要关注于提高小麦产量和品质,保障粮食安全。基于目标检测的智能检测系统可以快速识别小麦的多种病害,如根冠腐烂、叶锈病和小麦白粉病等。这种方法不仅提升了检测效率,还能在病害初期采取防治措施,有效降低病害扩散,减少农药使用,促进小麦的健康生长,推动现代农业的发展。共899张(也可以数据增强),8:1:1比例划分,(train:719张,val:90张,test:90张。小麦病害检测数据集,并提供基于YOLOv8的训练代码。3: Wheat Loose Smut 小麦散斑,又名小麦黑穗病。
2025-10-19 11:03:52
131
原创 光伏产量预测系统:基于多个模型的多步长智能预测平台
光伏产量预测系统是一个功能完整、易于使用的专业预测工具,通过集成多种机器学习算法,为光伏发电量预测提供了可靠的解决方案。系统的模块化设计和友好的用户界面使其既适合专业研究人员使用,也便于行业应用部署。未来可进一步扩展的功能包括:更多预测模型的集成云端数据同步移动端应用开发预测精度优化算法通过持续改进和优化,本系统有望成为光伏行业标准化的预测工具平台。
2025-10-19 11:02:42
272
原创 故障诊断系统:基于深度学习的轴承故障分析与诊断平台系统
故障诊断系统是一个功能完整、界面友好、技术先进的故障诊断平台,将传统的信号处理技术与现代深度学习方法相结合,为机械故障诊断提供了从基础分析到智能诊断的全套解决方案。系统的模块化设计使得它既适合初学者快速上手,也满足专业用户。
2025-10-19 10:57:11
562
原创 基于CNN-LSTM模型的航空发动机气路故障诊断(python)
本文提出了一种基于CNN-LSTM混合模型的航空发动机气路故障智能诊断系统。该系统通过融合卷积神经网络的空间特征提取能力和长短期记忆网络的时间序列分析能力,实现了对五种常见气路故障(包括叶片磨损、积碳、泄漏等)的准确识别。研究采用多维度传感器数据(压力、温度、转速等20+特征)进行模型训练,通过特征标准化、PCA降维等预处理方法优化数据质量。实验结果表明,该系统在故障诊断准确率、泛化能力等方面表现优异,为航空发动机健康管理提供了有效的智能化解决方案。
2025-10-12 17:52:43
733
原创 股票自动爬虫,利用多个模型进行预测(python编程,特征可以任意选择,预测量也可以进行选择)
本文介绍了一款基于Python的股票量化分析程序,主要功能包括:1)实时爬取股票历史数据并本地存储;2)提供CNN、LSTM等三种深度学习模型进行预测;3)支持未来5天股价走势预测。程序采用密钥加密保护知识产权,防止盗版。开发者强调该工具既可辅助投资决策(避免情绪化操作),也适合学术研究(预留模型接口)。同时提醒用户注意投资风险,并接受定制开发和论文合作需求。程序提供可视化界面展示股票数据,支持参数调优功能。
2025-08-26 23:40:25
900
原创 分别用五种不同的方法对时序序列的异常点检测(python代码)
本文比较了五种异常检测模型在溶解氧时序数据中的应用。iForest通过孤立机制识别异常点,LOF基于局部密度检测离群点,OneClassSVM构建超平面划分异常,DBSCAN利用密度聚类发现噪声点,K-means则通过距离聚类中心阈值判定异常。各模型均能有效识别异常值,其中iForest和LOF表现稳定,DBSCAN对参数敏感,K-means需人工设定阈值。实验通过可视化对比了异常检测效果,为水质监测提供了多种异常检测方案。不同模型适用于不同数据分布特点,用户可根据实际需求选择合适的检测方法。
2025-08-11 21:52:55
543
原创 剩余机械寿命RUL预测系统(python代码,训练好的模型可以对新数据直接预测剩余寿命和状态)
本文介绍了一个基于Python的航空发动机剩余机械寿命(RUL)预测系统,使用NASA的C-MAPSS数据集进行训练。系统包含两个主要功能:通过GUI1.py预测剩余寿命,通过GUI2.py评估当前状态。该系统采用NASA提供的涡扇引擎模拟数据,包含4个子数据集,其中FD001数据集(单工况、单故障)最常用。数据包含100台发动机的全生命周期运行参数(3种工况+21个传感器数据)。训练好的模型可直接对新数据进行预测,为发动机健康管理提供支持。项目代码和数据集已开源,便于研究者使用和改进。
2025-08-07 21:53:16
353
原创 六种不同故障下刀具状态识别(Python代码,MSCNN_LSTM_Attention模型)
摘要:本文分析了刀具六种典型状态:热裂纹(由热应力导致表面裂纹)、急剧磨损(快速磨损需立即更换)、初期磨损(使用初期正常磨损阶段)、崩刃(切削刃破损影响加工质量)、积屑瘤(切屑堆积影响刀具角度)和正常状态(磨损量可控的稳定工作状态)。每种状态均配有特征描述及对应危害分析,为刀具状态监测与维护提供参考依据。(99字)
2025-07-21 22:55:54
288
原创 基于添加注意力机制的LSTM高速流量预测(深圳宝安区高速数据,python代码,tensorflow框架)
开源交通数据集分析应用研究 摘要:本研究基于实地采集的三路口开源交通数据集(每周三车道级车流统计),探讨了多维交通分析应用。数据集包含方向、时间戳、车道号及车型数量等字段,时间粒度15分钟。研究重点展示了LSTM模型及其注意力机制改进版本在交通流量预测中的应用效果,同时指出该数据在拥堵分析、多路口关联性研究、安全评估等方面的潜在价值。该数据集可为交通规划与管理提供数据支持,有助于提升城市交通效率和安全性。
2025-07-13 22:24:30
208
原创 transformer+LSTM北京地铁人流量预测及调度优化方案(python代码,tensorflow框架)
摘要:本文提出基于LSTM和Transformer融合模型的人流量预测及调度方案。采用前5天数据预测第6天客流,结合混合模型(MSE:422.15训练集/324.09测试集)显著优于单一模型。调度方案按客流分级:正常(<100万)不干预,轻微拥堵(100-150万)限流5-15%,严重拥堵(>150万)限流15-30%。实验表明LSTM+Transformer组合在RMSE(20.55/18.00)和R²(0.71/0.79)等指标上表现最优,为客流管理提供有效决策支持。
2025-07-13 16:26:09
356
原创 yolov8草莓及病害检测项目开发(python开发,带有训练模型,可以重新训练,并有Pyqt5界面可视化)
data文件夹的数据集(train文件夹:655张照片和对应的yolo标签,valid文件夹:487张照片和对应的yolo标签;test文件夹:487张照片和对应的yolo标签)如有其它数据集检测需求,可定制项目。train.py文件夹。
2025-01-08 23:17:15
495
原创 YOLOv8草莓(开花&结果)检测系统(可以从图像、视频和摄像头三个途径进行检测)
资源包含可视化的草莓检测系统,检测方式:图片、视频、摄像头。类别草莓,开花、结果、果实成熟等状态。基于最新的YOLO-v8训练的草莓检测模型和完整的python代码以及草莓的训练数据,下载后即可运行,输出检测结果。),包远程运行起来。配置环境。
2025-01-08 23:15:21
294
原创 YOLOv8草莓生长状态(灰叶病&缺钙&需要肥料)检测系统(python开发,可以从图片、视频和摄像头三种方式检测,带有训练模型,可以重新训练,并有Pyqt5界面可视化)
如有其它数据集检测需求,可定制项目。
2025-01-08 23:12:57
295
原创 YOLOv8绝缘子边缘破损检测系统(可以从图片、视频和摄像头三种方式检测)
predictWindow.py是Pyqt5界面展示主程序,并调用训练好的yolov8模型参数,进行草莓不同类别的检测。insulator_train.py是训练脚本,detect_tools.py是用来读取和展示图像,被predictWindow.py调用,yolov8.pt是训练完成模型保存参数。重要文件介绍:data是数据文件夹。
2025-01-07 17:18:12
368
原创 YOLOv8常见水果识别检测系统(yolov8模型,从图像、视频和摄像头三种路径识别检测)
1.效果视频(资源包含可视化的水果识别检测系统,可识别图片和视频当中出现的六类常见的水果,包括: 苹果、香蕉、葡萄、橘子、菠萝、西瓜等,以及自动开启摄像头,进行水果识别检测。基于最新的YOLO-v8训练的水果检测模型和完整的python代码以及水果检测的训练数据,下载后即可运行。2.文件夹截图。
2025-01-07 17:15:12
384
1
原创 YOLOv8+PyQt5输电线路缺陷检测(目前最全面的类别检测,可以从图像、视频和摄像头三种路径检测)
以及自动开启摄像头,进行输电线路检测。基于最新的YOLO-v8训练的输电线路检测模型和完整的python代码以及输电线路检测的训练数据,下载后即可运行。如果只对数据集感兴趣,可以关注代码框最后一行。
2025-01-07 17:13:49
386
原创 YOLOv8+PyQt5野外火焰检测系统(可以从图像、视频和摄像头三种路径检测)
2.资源包含可视化的野外火焰检测系统,可用于火灾预警或火灾救援,该系统可自动检测和识别图片或视频当中出现的火焰,以及自动开启摄像头,进行火焰检测。基于最新的YOLO-v8训练的火焰检测模型和完整的python代码以及火焰检测的训练数据,下载后即可运行。
2025-01-07 17:09:32
166
原创 水稻病害检测(YOLO数据集,多分类,稻瘟病、纹枯病、褐斑病、枯心病、霜霉病、水稻细菌性条纹斑病、稻苞虫)
是自己利用LabelImg工具进行手工标注,数据集制作不易,请尊重版权(稻瘟病、纹枯病、褐斑病、枯心病、霜霉A病、水稻细菌性条纹斑病、稻苞虫)如果只需要正常和病害检测对的二分类数据集,可以关注只需要数据集可以往下关注。
2025-01-07 17:06:33
421
原创 YOLOv8+PyQt5玉米病害检测系统(yolov8模型,从图像、视频和摄像头三种路径识别检测)
1.资源包含可视化的玉米病害检测系统,基于最新的YOLOv8训练的玉米病害检测模型,和基于PyQt5制作的可视玉米病害系统,包含登陆页面和检测页面,该系统可自动检测和识别图片或视频当中出现的七类玉米病害:矮花叶病dwarf-mosaic、灰斑病cercospora、严重灰斑病cercospora-serious、锈病puccinia、严重锈病puccinia-serious、叶斑病leaf-spot'、严重叶斑病leaf-spot-serious,以及自动开启摄像头,进行玉米病害检测。
2025-01-07 17:05:30
264
原创 YOLOv8+PyQt5蔬菜识别检测(26种不同蔬菜类型,yolov8模型,从图像、视频和摄像头三种路径识别检测)
1.基于最新的YOLOv8训练的蔬菜检测模型,和基于PyQt5制作的可视蔬菜检测系统,该系统可自动检测和识别图片或视频当中出现的26种蔬菜:'鸡蛋', '姜', '菜椒', '南瓜', '山药', '辣椒', '霉豆', '蘑菇', '香菜', '茼蒿', '油菜', '黄瓜', '角瓜', '莲藕', '西兰花', '菜花', '土豆', '地瓜', '玉米', '洋葱', '西红柿', '胡萝卜', '茄子', '白萝卜', '韭菜', '白菜',以及自动开启摄像头,进行蔬菜检测。
2025-01-07 17:04:30
251
原创 西红柿叶病害检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
效果视频:西红柿叶病害检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)_哔哩哔哩_bilibili2.效果图片
2025-01-04 21:00:34
271
原创 YOLOv8+PyQt5鸟类检测系统完整资源集合(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
资源包含可视化的鸟类检测系统,基于最新的YOLOv8训练的鸟类检测模型,和基于PyQt5制作的可视化鸟类检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的各种鸟类,以及自动开启摄像头,进行鸟类检测,并在图片上展示鸟类的位置和置信度,以及输出鸟类的数量。资源包含基于最新的YOLO-v8训练的鸟类检测模型和完整的python代码以及鸟类检测的训练数据,下载后即可运行。
2025-01-04 20:53:49
307
原创 YOLOv8+PyQt5面部表情检测(可以重新训练模型,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
1.资源包含可视化的面部表情检测系统,基于最新的YOLOv8训练的面部表情检测模型,和基于PyQt5制作的可视化面部表情检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的八类面部表情:生气、蔑视、反感、恐惧、开心、中性、悲伤、惊讶,以及自动开启摄像头,进行面部表情检测,并在图片上展示面部表情的位置,以及输出面部表情的类型和置信度。资源包含基于最新的YOLO-v8训练的面部表情检测模型和完整的python代码以及面部表情检测的训练数据,下载后即可运行。
2025-01-04 20:25:52
275
原创 YOLOv8+PyQt5动物检测(可以重新训练模型,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
资源包含可视化的动物检测系统,基于最新的YOLOv8训练的动物检测模型,和基于PyQt5制作的可视化动物检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的3种动物,包括:猫、狗、猴等,以及自动开启摄像头,进行动物检测,并在图片上展示动物的位置,以及输出动物的类型、坐标和置信度。资源包含基于最新的YOLO-v8训练的动物检测模型和完整的python代码以及动物检测的训练数据,下载后即可运行。
2025-01-04 20:23:50
161
原创 YOLOv8+PyQt5农作物杂草检测(可以重新训练模型,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
资源包含可视化的农作物杂草检测系统,基于最新的YOLOv8训练的农作物杂草检测模型,和基于PyQt5制作的可视化农作物杂草检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的农作和物杂草,以及自动开启摄像头,进行农作物杂草检测,并在图片上展示农作或物杂草的位置,以及输出检测结果是农作物还是杂草以及它的坐标和置信度。资源包含基于最新的YOLO-v8训练的农作物杂草检测模型和完整的python代码以及农作物杂草检测的训练数据,下载后即可运行。
2025-01-04 19:49:03
207
原创 YOLOv8+PyQt5车辆类型检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
资源包含可视化的车辆类型检测系统,基于最新的YOLOv8训练的车辆类型检测模型,和基于PyQt5制作的可视化车辆类型检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的21种车辆类型,包括:小汽车、公交车、小型公交车、SUV、货车、卡车、三轮车、摩托车、自行车、救护车、警车、垃圾车、手推车等,以及自动开启摄像头,进行车辆类型检测,并在图片上展示车辆的位置,以及输出车辆类型的类型、坐标和置信度。
2025-01-03 23:14:55
207
原创 YOLOv8+PyQt5西红柿成熟度检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
资源包含基于最新的YOLO-v8训练的西红柿成熟度检测模型和完整的python代码以及西红柿成熟度检测的训练数据,下载后即可运行。
2025-01-03 23:13:35
246
原创 YOLOv8+PyQt5海洋船只检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)
资源包含可视化的海洋船只检测系统,可对于高空拍摄到的海洋图片进行轮船检测,基于最新的YOLOv8训练的海洋船只检测模型,和基于PyQt5制作的可视化海洋船只检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的各种轮船,以及自动开启摄像头,进行海洋船只检测,并在图片上展示海洋船只的位置,以及输出海洋船只的坐标和置信度。2.资源包含基于最新的YOLO-v8训练的海洋船只检测模型和完整的python代码以及海洋船只检测的训练数据,下载后即可运行。
2025-01-03 23:11:32
175
原创 YOLOv8+PyQt5非洲动物检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)
资源包含可视化的非洲动物检测系统,基于最新的YOLOv8训练的非洲动物检测模型,和基于PyQt5制作的可视化非洲动物检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的4种非洲动物,包括:野牛、大象、犀牛和斑马,以及自动开启摄像头,进行非洲动物检测,并在图片上展示非洲动物的位置,以及输出非洲动物的类型、坐标和置信度。资源包含基于最新的YOLO-v8训练的非洲动物检测模型和完整的python代码以及非洲动物检测的训练数据,下载后即可运行。
2025-01-03 23:10:15
192
原创 YOLOv8+PyQt5非洲动物检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)
资源包含可视化的非洲动物检测系统,基于最新的YOLOv8训练的非洲动物检测模型,和基于PyQt5制作的可视化非洲动物检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的4种非洲动物,包括:野牛、大象、犀牛和斑马,以及自动开启摄像头,进行非洲动物检测,并在图片上展示非洲动物的位置,以及输出非洲动物的类型、坐标和置信度。资源包含基于最新的YOLO-v8训练的非洲动物检测模型和完整的python代码以及非洲动物检测的训练数据,下载后即可运行。
2025-01-03 23:09:00
179
原创 YOLOv8+PyQt5苹果叶病害检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)
资源包含可视化的苹果叶病害检测系统,基于最新的YOLOv8训练的苹果叶病害检测模型,和基于PyQt5制作的可视苹果叶病害系统,包含登陆页面和检测页面,该系统可自动检测和识别图片或视频当中出现的三类苹果叶病害:苹果黑根病Black Root Disease、苹果瘤虫病Scab Disease、苹果雪松锈病Cedar Apple Rust Disease以及健康苹果叶Healthy Apple Leaf,另外程序具有自动开启摄像头,进行苹果叶病害检测功能。
2025-01-03 23:07:42
165
原创 YOLOv8+注意力机制+PyQt5玉米病害检测系统完整资源集合
资源包含可视化的玉米病害检测系统,基于最新的YOLOv8+注意力机制训练的玉米病害检测模型,和基于PyQt5制作的可视玉米病害系统,包含登陆页面和检测页面,该系统可自动检测和识别图片或视频当中出现的七类玉米病害:矮花叶病dwarf-mosaic、灰斑病cercospora、严重灰斑病cercospora-serious、锈病puccinia、严重锈病puccinia-serious、叶斑病leaf-spot'、严重叶斑病leaf-spot-serious,以及自动开启摄像头,进行玉米病害检测。
2025-01-03 23:06:02
124
原创 独家创作YOLOv8韭菜检测系统(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)
2.1.1.以训练集为例,有被标注的图片(992)和labels(992)验证集和测试集分别有:48个样本和19个样本。
2025-01-03 21:11:30
251
原创 交通流量预测(python代码,压缩包中带有数据,CNN_GRU,CNN_BiGRU_ATTENTION,LSTM三种不同模型,多特征输入,单标签输出,可以替换为其它时序数据集)
环境库版本(如果库版本不一样, 一般也可以运行,这里展示我运行时候的库版本,是为了防止你万一在你的电脑上面运行不了,可以按照我的库版本进行安装并运行)
2025-01-03 21:09:09
630
原创 面向用户界面设计,故障诊断程序集成设计(以CWRU为例,C语言)
1.主要介绍: 3. BP神经网络故障预测-之- 训练网络点击加载网络,选择保存的模型,此时会提示模型可以预测的故障种类,不在范围内的故障无法准确预测点击读取数据,选择待检测的轴承数据点击分析预测,提示故障类型
2025-01-03 21:07:10
866
2
原创 机械寿命预测,多步预测,跨设备寿命预测(以一台训练好的模型对另一台直接预测,python代码,压缩包包含数据集,解压缩后直接运行)
通过前k(代码里设定的K=3)个输入状态,预测后t(代码里设置的t=3)个周期的寿命。1.数据包含了两台机械设备采集的输入特征数据和寿命数据。3.2. In_2st作为训练集,In_1st作为测试集。2.模型:CNN_LSTM_ATTENTION。
2025-01-03 21:04:50
431
原创 基于 VGG16 迁移学习的轴承故障诊断方法代码(python代码,带有数据集,可以直接运行)
以0HP文件夹为例,打开后的子文件序列,1HP/2HP/3HP子文件类似,creat_picture.py是生成图片程序。对比模型CNN效果较差 ,只能将迭代次数改为100,方能稳定些,但是效果还是没有VGG16模型好。代码运行库要求:TensorFlow>=2.4.0即可(可以远程协助运行起来代码)VGG16文件夹装的VGG16模型对各种负载下的实验程序。CNN文件夹装的对比模型普通CNN对各种负载下的实验程序。0HPimages文件夹装的生成图片。训练集和测试集来自不同负载。
2025-01-03 21:03:19
453
原创 基于一维WDCNN的滚动轴承故障诊断(十分类,Python代码,TensorFlow框架,压缩包包含数据集和代码,解压缩后直接运行)
main_0HP.py、main_1HP.py、main_2HP.py和main_3HP.py是故障诊断主程序,分别对应不同负载的数据,这四个程序只有数据调取路径这行代码不一样,其它部分都相同,只是担心新手不会修改数据路径,因此分成了四个脚本。preprocess.py是数据预处理程序,将原始数据变成一个个样本,被主程序调用。data文件夹装载的是凯斯西楚大学(CWRU)轴承数据集。运行环境库要求:TensorFlow>=2.4.0即可。以0HP文件夹为例,进行展示。
2025-01-03 21:00:08
454
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人