用户行为分析之时间间隔
一、问题简介
实际业务中会有很多关于时间间隔的分析,例如有30%用户使用产品或某一功能的时间间隔是2天,50%用户产品使用间隔是7天,15%用户产品使用间隔是10天,5%用户产品使用间隔大于15天。
那么以上各类用户对应的人均付费情况、人群画像是否有什么区别,是否还有特殊的隐形行为,是否可以进行转化?
大家可以发散思路,这里只是举例
二、举例数据(login_data)
user_id | login_time |
---|---|
aa | 2021-10-10 12:10:36 |
bb | 2021-10-12 09:20:50 |
aa | 2021-10-10 20:10:36 |
bb | 2021-10-13 10:10:50 |
cc | 2021-10-11 05:00:50 |
user_id是每个用户的唯一ID,login_time是用户登陆时的时间,本次求解在最近30天内,用户2次登陆间隔小于3天时间的有多少次。
例如a 在10月1日登陆了,10月2日也登陆了,那这就算1次,小于多少分钟也是可以的,这里看业务具体怎么定义。
三、实现方法
1.lead()函数
with t_1 as
(-- sql_1 start
select user_id,
login_time,
lead(user_id, 1, null) over(partition by user_id