AI智能体-实战篇
文章平均质量分 92
AI智能体开发实战小项目,带你从0到1实现智能体开发
Wise玩转AI智能体
AI Agents 工程实践者 / 一人公司开发者
AI 不是用来玩的,AI是用来提升工作效率的。
专注智能体工程化、RAG、工具调用、自动化工作流。
输出可复现 Demo、架构图、部署方案与真实落地案例。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
智能体实战系列(三)|解决对话膨胀的上下文垃圾回收实现
本文探讨了Agent系统中上下文管理的"垃圾回收"策略。随着对话进行,上下文膨胀会导致性能下降,因此需要像管理内存一样管理对话历史。文章提出上下文分类管理(结构化状态、决策依据、对话噪音)和标记系统,结合时间与命中双衰减机制实现智能清理。通过客户服务Agent实例展示了如何在实际项目中应用这些策略:关键信息长期保留,临时信息及时清理。这种工程化的上下文管理方法能有效控制资源消耗,同时保持对话连贯性,是AI工程落地的重要实践。原创 2025-12-31 17:17:02 · 781 阅读 · 0 评论 -
WiseAgent智能体框架实战之CrewAI篇(五)— 构建完整的医院智能体导诊系统与异常处理
本文介绍了医院导诊智能体系统的第四期工程实践,重点完成了系统整合与异常处理机制。文章首先概述了本期新增功能,包括系统整合、异常处理、用户反馈、系统监控和安全控制五大模块。随后详细展示了项目结构,并重点阐述了异常处理机制的设计与实现,包括基础异常类定义和异常处理装饰器。此外,还实现了用户反馈工具、系统监控日志和安全检查器等核心组件。通过整合前三期功能并新增企业级特性,最终构建了一个具备完整导诊流程、异常处理、用户反馈和安全控制的可部署企业级智能应用。文章强调异常处理是智能体稳定性的关键保障,并通过实际代码演示原创 2025-12-25 15:35:23 · 719 阅读 · 0 评论 -
WiseAgent智能体框架实战之CrewAI篇(四) - 优化智能体的问答能力与记忆系统
本期医院导诊智能体升级重点实现记忆系统与知识增强,主要包括: 记忆系统分层实现: 短期记忆:存储30分钟内的会话上下文,支持多轮对话连贯性 长期记忆:保存用户档案和偏好,实现个性化服务 医疗知识库扩展: 常见疾病症状库(感冒/高血压/糖尿病等) 就诊流程FAQ库(挂号/预约/缴费等) 专业医疗咨询工具 功能升级: 支持自然的多轮对话交互 可记忆用户基本信息和历史咨询 提供个性化导诊建议 医疗常识智能问答 系统通过会话ID跟踪对话流程,结合用户ID实现长期记忆存储,显著提升了智能体的服务连贯性和个性化水平。下原创 2025-12-24 14:38:11 · 821 阅读 · 0 评论 -
WiseAgent智能体框架实战之CrewAI篇(三) | 为导诊智能体添加预约功能与工具调用
本文介绍了医院导诊智能体的功能升级实践,重点实现了预约挂号和症状分析两大核心功能。通过构建预约工具和症状分析工具,智能体具备了与外部系统交互的能力;新增的协调智能体可自主规划任务步骤,处理复杂查询;优化后的系统支持科室推荐、医生查询、症状分析和预约挂号一站式服务。项目采用模块化设计,扩展了工具集和任务规划能力,体现了智能体"工具执行"和"任务规划"的核心价值。这些升级使导诊系统从信息查询工具进化为能完成实际医疗流程的智能助手,为后续引入记忆系统和多轮对话功能奠定了基础原创 2025-12-23 14:32:58 · 573 阅读 · 0 评论 -
WiseAgent智能体框架实战之CrewAI篇(二) | 从零开始构建基础导诊智能体
本文介绍了基于CrewAI框架构建医院导诊智能体的实践过程。通过模块化设计,实现了科室查询和医生信息查询两大基础功能。项目采用结构化开发方式,包含智能体、任务、工具等独立模块,并应用工程化Prompt设计原则。文章详细展示了环境配置、数据模拟、工具开发、智能体定义和任务编排的全流程,最终构建出一个完整的智能体工作流。该实践为后续功能扩展奠定了基础,体现了AI技术在医疗场景中的实用价值。原创 2025-12-22 13:46:58 · 817 阅读 · 0 评论 -
WiseAgent智能体框架实战之CrewAI篇(一) |CrewAI 框架详解与医院导诊智能体项目规划
本文介绍使用CrewAI框架构建医院智能体导诊系统的实践方案。文章首先分析医院导诊场景的重复性特点,说明AI智能体的适用性。然后详细解析CrewAI框架的核心组件:Agent(角色化智能体)、Task(明确任务)、Tool(外部工具)和Crew(团队协作),并展示相关代码示例。最后提出四期渐进式开发计划,从基础查询到全功能系统,逐步实现智能导诊功能。该方案强调AI技术的实用价值,旨在通过智能体协作提升医疗服务效率。原创 2025-12-21 11:52:20 · 513 阅读 · 0 评论 -
智能体实战系列(二)|智能体「行动后反思」的自动化Demo
本项目实现了一个基于LLM的智能体系统,具备自动化行动后反思能力。系统包含SimpleAgent和PostMortemSystem两个核心组件:SimpleAgent通过LLM实现任务规划、工具路由和参数解析;PostMortemSystem将执行日志转化为结构化资产(ReflectionUnit和ImprovementCase),自动生成改进建议。程序支持实际模式和模拟模式运行,包含天气查询和税费计算两个示例工具。当Agent执行失败时,系统会自动分析错误模式并生成工程改进方案。该设计验证了智能体从错误中原创 2025-12-20 12:13:20 · 762 阅读 · 0 评论 -
智能体实战系列:智能体系统从黑盒到可观测
本文介绍了一个基于DeepSeek模型的可观测性Agent系统Demo,通过结构化日志和LLM驱动决策实现智能体开发。系统采用模块化设计,包含输入解析、任务理解、规划、决策、工具调用等阶段,每个阶段都记录结构化事件以支持调试和回放。核心特点包括:1) 将LLM作为决策中心;2) 强制结构化工具调用;3) 完整的执行追踪能力。文章提供了交互式演示教程,支持用户提问、查看执行日志和回放请求流程。虽然该Demo尚未达到工程落地标准,但展示了智能体开发的基本框架,可作为二次开发的基础。原创 2025-12-18 12:54:17 · 620 阅读 · 0 评论
分享