设计一个有效的算法,可以计算两个n位大整数的乘法运算。
如果按照我们日常的计算方法,应该就是将两个数逐位相乘,最后加起来得到最终的结果。由于是大整数乘法,那么我们用string来存储这两个数,因为是要做乘法,我们要从两个数的最低位开始乘,并且难免会有进位,所以我们打算翻转这两个string,使得更好操作一下。
string multiply(string num1,string num2)
{
int len1=num1.length(),len2=num2.length();
int len=len1+len2+1;
reverse(num1.begin(),num1.end());
reverse(num2.begin(),num2.end());
//tmp储存每次乘法的结果,res储存最后相加的结果
char res[len],tmp[len];
for(int i=0;i<len;i++)
{
res[i]='0';
tmp[i]='0';
}
for(int i=0;i<len1;i++)
{
//jw储存每次乘法的进位,r_jw储存最后相加的进位
int jw=0,r_jw=0;
for(int j=0;j<len2;j++)
{
tmp[j]=((num1[i]-'0')*(num2[j]-'0')+jw)%10+'0';
int res_temp=(res[j+i]-'0')+(tmp[j]-'0')+r_jw;
res[j+i]=res_temp%10+'0'; //储存最终结果
jw=((num1[i]-'0')*(num2[j]-'0')+jw)/10;
r_jw=res_temp/10;
}
//如果最高位有进位
if(r_jw!=0||jw!=0)
{
res[len2+i]=jw+r_jw+'0';
//cout<<res[len2+i]<<endl;
}
}
string result="";
bool flag=false;
for(int i=len-1;i>=0;i--)
{
//遇到第一个正整数
if(res[i]!='0'&&!flag){
result+=res[i];
flag=true;
}
else if(flag)
result+=res[i];
}
if(result=="") result="0";
return result;
}
但是这样做算法复杂度是O(n^2)。我们想要用复杂度更低的算法来解决这个问题。
如果采取以上算法的话时间复杂度可以降低到O(n^log2(3))。
string Add(string num1,string num2)
{
reverse(num1.begin(),num1.end());
reverse(num2.begin(),num2.end());
string res;
int len1=num1.length();
int len2=num2.length();
int len=min(len1,len2);
int jw=0;
for(int i=0;i<len;i++)
{
int tmp=(num1[i]-'0')+(num2[i]-'0')+jw;
res+=char(tmp%10+'0');
//cout<<"res1:"<<res[i]<<endl;
jw=tmp/10;
}
if(len1<len2)
{
for(int i=len;i<len2;i++)
{
int tmp=(num2[i]-'0')+jw;
res+=char(tmp%10+'0');
//cout<<"res2:"<<res<<endl;
jw=tmp/10;
}
if(jw)
res+=jw+'0';
}
else if(len1>len2)
{
for(int i=len;i<len1;i++)
{
int tmp=(num1[i]-'0')+jw;
res+=char(tmp%10+'0');
//cout<<"res3:"<<res<<endl;
jw=tmp/10;
}
if(jw)
res+=jw+'0';
}
else
if(jw)
res+=jw+'0';
reverse(res.begin(),res.end());
return res;
}
//num1>=num2
string Sub(string num1,string num2)
{
reverse(num1.begin(),num1.end());
reverse(num2.begin(),num2.end());
int len1=num1.length();
int len2=num2.length();
int len=min(len1,len2);
int jw=0;
string res,result;
for(int i=0;i<len;i++)
{
int a=num1[i]-'0';
int b=num2[i]-'0'+jw;
if(a>=b)
{
res+=char(a-b+'0');
jw=0;
}
else
{
res+=char(a+10-b+'0');
jw=1;
}
}
for(int i=len;i<len1;i++)
{
int a=num1[i]-'0';
int b=jw;
if(b==0)
res+=num1[i];
else if(a>=b)
{
res+=char(a-b+'0');
jw=0;
}
else if(a<b)
{
res+=char(a+10-b+'0');
jw=1;
}
}
int flag=false;
for(int i=res.length()-1;i>=0;i--)
{
if(res[i]!='0'&&!flag)
{
result+=res[i];
flag=true;
}
else if(flag)
result+=res[i];
}
return result;
}
//两个n位大整数的乘法
string Multiply1(string num1,string num2,int n)
{
string a,b,c,d,ac,ad,bc,bd,adbc;
a=num1.substr(0,n/2);
b=num1.substr(n/2);
c=num2.substr(0,n/2);
d=num2.substr(n/2);
ac=multiply(a,c);
ad=multiply(a,d);
bc=multiply(b,c);
bd=multiply(b,d);
adbc=Add(ad,bc);
for(int i=0;i<b.length()*2;i++)
ac+="0";
for(int i=0;i<b.length();i++)
adbc+="0";
string res=Add(ac,Add(adbc,bd));
return res;
}
//两个n位大整数的乘法
string Multiply2(string num1,string num2,int n)
{
string a,b,c,d,a_b,c_d,ac,bd,a_bc_d,adbc;
a=num1.substr(0,n/2);
b=num1.substr(n/2);
c=num2.substr(0,n/2);
d=num2.substr(n/2);
a_b=Add(a,b);
c_d=Add(c,d);
a_bc_d=multiply(a_b,c_d);
ac=multiply(a,c);
bd=multiply(b,d);
adbc=Sub(a_bc_d,Add(ac,bd));
for(int i=0;i<b.length()*2;i++)
ac+="0";
for(int i=0;i<b.length();i++)
adbc+="0";
string res=Add(ac,Add(adbc,bd));
return res;
}