大整数乘法

设计一个有效的算法,可以计算两个n位大整数的乘法运算。

如果按照我们日常的计算方法,应该就是将两个数逐位相乘,最后加起来得到最终的结果。由于是大整数乘法,那么我们用string来存储这两个数,因为是要做乘法,我们要从两个数的最低位开始乘,并且难免会有进位,所以我们打算翻转这两个string,使得更好操作一下。

string multiply(string num1,string num2)
{
	int len1=num1.length(),len2=num2.length();
	int len=len1+len2+1;
	reverse(num1.begin(),num1.end());
	reverse(num2.begin(),num2.end());
	//tmp储存每次乘法的结果,res储存最后相加的结果
	char res[len],tmp[len];
	for(int i=0;i<len;i++)
	{
		res[i]='0';		
		tmp[i]='0';
	}
	for(int i=0;i<len1;i++)
	{
	   //jw储存每次乘法的进位,r_jw储存最后相加的进位
		int jw=0,r_jw=0;
		for(int j=0;j<len2;j++)
		{
			tmp[j]=((num1[i]-'0')*(num2[j]-'0')+jw)%10+'0';
			int res_temp=(res[j+i]-'0')+(tmp[j]-'0')+r_jw;
			res[j+i]=res_temp%10+'0'; //储存最终结果
			jw=((num1[i]-'0')*(num2[j]-'0')+jw)/10;
			r_jw=res_temp/10;
		}
		//如果最高位有进位
		if(r_jw!=0||jw!=0)
		{
			res[len2+i]=jw+r_jw+'0';
			//cout<<res[len2+i]<<endl;			
		}
	}
	string result="";
	bool flag=false;
	for(int i=len-1;i>=0;i--)
	{
		//遇到第一个正整数 
		if(res[i]!='0'&&!flag){
            result+=res[i];
		    flag=true;
		}
		else if(flag)
			result+=res[i];
	}
	if(result=="") result="0";
	return result;
}

但是这样做算法复杂度是O(n^2)。我们想要用复杂度更低的算法来解决这个问题。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如果采取以上算法的话时间复杂度可以降低到O(n^log2(3))。

string Add(string num1,string num2)
{
	reverse(num1.begin(),num1.end());
	reverse(num2.begin(),num2.end());
	string res;
	int len1=num1.length();
	int len2=num2.length();
	int len=min(len1,len2);
	int jw=0;
	for(int i=0;i<len;i++)
	{
		int tmp=(num1[i]-'0')+(num2[i]-'0')+jw;
		res+=char(tmp%10+'0');
		//cout<<"res1:"<<res[i]<<endl;
		jw=tmp/10;
	}
	if(len1<len2)
	{
		for(int i=len;i<len2;i++)
		{
			int tmp=(num2[i]-'0')+jw;
			res+=char(tmp%10+'0');
	    	//cout<<"res2:"<<res<<endl;
			jw=tmp/10;
		}
		if(jw)
			res+=jw+'0';
	}
	else if(len1>len2)
	{
		for(int i=len;i<len1;i++)
		{
			int tmp=(num1[i]-'0')+jw;
			res+=char(tmp%10+'0');			
		    //cout<<"res3:"<<res<<endl;
			jw=tmp/10;
		}
		if(jw)
			res+=jw+'0';
	}
	else
		if(jw)
			res+=jw+'0';
	reverse(res.begin(),res.end());
	return res;
}

//num1>=num2
string Sub(string num1,string num2)
{
	reverse(num1.begin(),num1.end());
	reverse(num2.begin(),num2.end());
	int len1=num1.length();
	int len2=num2.length();
	int len=min(len1,len2);
	int jw=0;
	string res,result;
	for(int i=0;i<len;i++)
	{
		int a=num1[i]-'0';
		int b=num2[i]-'0'+jw;
		if(a>=b)
		{
			res+=char(a-b+'0');
			jw=0;			
		}
		else
		{
			res+=char(a+10-b+'0');
			jw=1;
		}
	}
	for(int i=len;i<len1;i++)
	{
		int a=num1[i]-'0';
		int b=jw;
		if(b==0)
			res+=num1[i];
		else if(a>=b)
		{
			res+=char(a-b+'0');
			jw=0;
		}
		else if(a<b)
		{
			res+=char(a+10-b+'0');
			jw=1;
		}
	}
	int flag=false;
	for(int i=res.length()-1;i>=0;i--)
	{
		if(res[i]!='0'&&!flag)
		{
			result+=res[i];
			flag=true;
		}
		else if(flag)
			result+=res[i];
	}
	return result;
}

//两个n位大整数的乘法 
string Multiply1(string num1,string num2,int n)
{
	string a,b,c,d,ac,ad,bc,bd,adbc;
	a=num1.substr(0,n/2);
	b=num1.substr(n/2);
	c=num2.substr(0,n/2);
	d=num2.substr(n/2);
	ac=multiply(a,c);
	ad=multiply(a,d);
	bc=multiply(b,c);
	bd=multiply(b,d);
	adbc=Add(ad,bc);
	for(int i=0;i<b.length()*2;i++)
		ac+="0";
	for(int i=0;i<b.length();i++)
		adbc+="0";
	string res=Add(ac,Add(adbc,bd));
	return res;
} 

//两个n位大整数的乘法 
string Multiply2(string num1,string num2,int n)
{
	string a,b,c,d,a_b,c_d,ac,bd,a_bc_d,adbc;
	a=num1.substr(0,n/2);
	b=num1.substr(n/2);
	c=num2.substr(0,n/2);
	d=num2.substr(n/2);
	a_b=Add(a,b);
	c_d=Add(c,d);
	a_bc_d=multiply(a_b,c_d);
	ac=multiply(a,c);
	bd=multiply(b,d);
	adbc=Sub(a_bc_d,Add(ac,bd));
	for(int i=0;i<b.length()*2;i++)
		ac+="0";
	for(int i=0;i<b.length();i++)
		adbc+="0";
	string res=Add(ac,Add(adbc,bd));
	return res;
} 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值