题目描述
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
分析
根据题目描述,我们的二维数组长这样:
仔细观察这个数组可以发现,左下的元素 (4) 有一个特性,那就是右边的元素都比它大,上面的元素都比它小。这种特殊的元素给我们提供了一个非常好的查找路径,我们可以通过比较元素,如果当前元素比目标值小的话,我们就向右边的路径行走,继续查找较大的元素,反之我们就向上的路径行走。
算法
利用其特性,我们的算法就是从左下的元素开始,比较当前元素与目标值,如果当前元素小于目标值,我们移动到右边的元素,再次进行比较。反之,我们移动到上方的元素,并再次进行比较。该过程将持续到我们找到目标值,或移动到数组边界为止。
动图演示
Java 代码
public class Solution {
public boolean Find(int target, int [][] array) {
int rows = array.length;
int cols = array[0].length;
// 此为左下角元素的位置
int i = rows - 1;
int j = 0;
while (i >= 0 && j < cols) {
int value = array[i][j];
if (target == value) {
return true;
}
if (target < value) {
// 如果当前元素大于目标值,向上移动
i--;
} else {
// 如果当前元素小于目标值,向右移动
j++;
}
}
return false;
}
}
算法效率分析
从动图中可以看出,这种算法每一次都会排除一行或者一列,那么在最坏的情况下就是会遍历所有的行列,因此算法的效率为:
O (M + N)
其中 M 为行数,N 为列数。