分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。
切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,
你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
暴力法
思想就是直接暴力,把所有的巧克力都按照最大长度来切割,如果最后得到的巧克力总数大于等于小明的朋友数,那就返回,因为len是从100000
也就是题目给的最大长度开始往下递减的,所以能满足要求的长度一定是最大的。
class Main{
public static void main(String[] args) {
int n, k;
int[] h = new int[100000];
int[] w = new int[100000];
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
k = sc.nextInt();
for (int i = 0; i < n; ++i) {
h[i] = sc.nextInt();
w[i] = sc.nextInt();
}
int len=100000;
while (l <= r) {
int cnt = 0;
//每个巧克力块,都按照len来切割
for (int i = 0; i < n; ++i) {
cnt += (h[i] / len) * (w[i] / len);
}
if(cnt>=k){
System.out.println(len);
return;
}
}
}
}
二分优化
直接暴力的最坏情况肯定超过1秒,而题目要求最大不超过1秒,所以需要对代码进行优化。对于这个巧克力的长度,是可以用二分法来确定区间的,因为长度总是递减的,就是有序的,用二分缩小区间,能优化不少。
class Main{
public static void main(String[] args) {
int n, k;
int[] h = new int[100000];
int[] w = new int[100000];
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
k = sc.nextInt();
for (int i = 0; i < n; ++i) {
h[i] = sc.nextInt();
w[i] = sc.nextInt();
}
int r = 100001;
int l = 1;
int ans = 0;
while (l <= r) {
int mid = (l + r) / 2;
int cnt = 0;
//每个巧克力块,都按照len来切割
for (int i = 0; i < n; ++i) {
cnt += (h[i] / mid) * (w[i] / mid);
}
if (cnt >= k) {
l = mid + 1;
ans = mid;
} else {//如果能分完,再去找最大的哪个长度
r = mid - 1;
}
}
System.out.println(ans);
}
}