【蓝桥杯2017Java】分巧克力

分巧克力

儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。

为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。
切出的巧克力需要满足:

1. 形状是正方形,边长是整数  
2. 大小相同  

例如一块6x5的巧克力可以切出62x2的巧克力或者23x3的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,
你能帮小Hi计算出最大的边长是多少么?

输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)  
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000) 
输入保证每位小朋友至少能获得一块1x1的巧克力。   

输出
输出切出的正方形巧克力最大可能的边长。

样例输入:
2 10  
6 5  
5 6  

样例输出:
2

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms


请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。

暴力法

思想就是直接暴力,把所有的巧克力都按照最大长度来切割,如果最后得到的巧克力总数大于等于小明的朋友数,那就返回,因为len是从100000也就是题目给的最大长度开始往下递减的,所以能满足要求的长度一定是最大的。

class Main{
    public static void main(String[] args) {
        int n, k;
        int[] h = new int[100000];
        int[] w = new int[100000];
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        k = sc.nextInt();
        for (int i = 0; i < n; ++i) {
            h[i] = sc.nextInt();
            w[i] = sc.nextInt();
        }
        int len=100000;
        while (l <= r) {
            int cnt = 0;
            //每个巧克力块,都按照len来切割
            for (int i = 0; i < n; ++i) {
                cnt += (h[i] / len) * (w[i] / len);
            }
            if(cnt>=k){
            	System.out.println(len);
            	return;
            }
        }
    }
}

二分优化

直接暴力的最坏情况肯定超过1秒,而题目要求最大不超过1秒,所以需要对代码进行优化。对于这个巧克力的长度,是可以用二分法来确定区间的,因为长度总是递减的,就是有序的,用二分缩小区间,能优化不少。

class Main{
    public static void main(String[] args) {
        int n, k;
        int[] h = new int[100000];
        int[] w = new int[100000];
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        k = sc.nextInt();
        for (int i = 0; i < n; ++i) {
            h[i] = sc.nextInt();
            w[i] = sc.nextInt();
        }
        int r = 100001;
        int l = 1;
        int ans = 0;
        while (l <= r) {
            int mid = (l + r) / 2;
            int cnt = 0;
            //每个巧克力块,都按照len来切割
            for (int i = 0; i < n; ++i) {
                cnt += (h[i] / mid) * (w[i] / mid);
            }

            if (cnt >= k) {
                l = mid + 1;
                ans = mid;
            } else {//如果能分完,再去找最大的哪个长度
                r = mid - 1;
            }
        }
        System.out.println(ans);
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值