小黑子的数模基础篇
- 学习视频:数学建模老哥
p1——p2基础
p3——p36算法
p37——56建模(MATLAB)
p57——65写作
p66——69,p81——83,p108——111获奖指南总结性的东西
p70——80国赛
p84——107美赛
p112——120实战 - 学习视频:北海:快速入门数模建模算法+MATLAB入门+论文写作+数学模型与算法
一、什么是数学建模
-
官方解释:
-
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之,建立数学模型的这个过程就称为数学建模。
-
-
个人理解:
- 数学建模往往解决的是生活中无法直观看出的一个东西的本质,或者是无法通过一组数据或原型什么的得出结论,我们必须要建立一个一定的数学方法来提炼总结得出一个结论,这个过程叫做数学建模 。
-
数学建模例题:
-
数学建模比赛分为什么?
-
数学建模的过程
-
关于数学建模的备战
论文标题比如:基于什么灰色预测的小麦产量研究与分析;基于重置分析法的水质安全评价研究与分析;基于神经网络的灰色预测模型的什么什么研究等等。
1.1 数学模型分类
1.2 备战准备什么
(1)必须找好两个靠谱的队友,定期组织研讨和交流
(2)必须每三天看一篇优秀的数模论文,重点看摘要和问题分析及建模过程
(3)必须明确三人的分工,确保写作/建模/编程团队都具备
(4)必须清晰的明白建模各部分到底应该写什么
(5)必须对所有常见算法进行系统的学习,明确
(6)算法用途和实现过程备战时间建议:
每天拿出两个小时学习数学建模:按照算法、编程、写作、排版的顺序进行算法:课程+《数学建模书籍(司守奎》,编程(Matlab自学一本通20 18版本即可),写作(整理优秀论文对语言进行学习)排版(学习LATEX软件)每人每三天阅读完一篇获奖优秀论文,并和队友沟通分享经验
(7)每半月适当开一次总结会,发表自己的学习收获和下一步的工作中心每月进行一次全真模拟,寻找老师进行论文评估
数学建模的六个步骤:
1.3 组队学习路线
-
建模员:
- 学习基础知识:高数、线代等数学相关的基础知识
- 学习算法知识:比如算法,看学习算法的相关视频
- 学习优秀论文:要知道这算法是怎么和实际问题解决的,就要通过学习优秀论文进行提高
-
程序员:
- 学习编程知识:学习matlab或python或c等语言,学会其基本的语法结构,然后通过做题进行巩固
- 调试常用模型:知道常用的问题,将常用的模型进行一个调试,知道数据怎么输入、参数怎么修改
- 复现优秀论文:对优秀论文里面所建立的模型,进行一个代码复现,起到一个演练的作用
-
写作员:
- 掌握写作要求:比如模型分析和模型展示,这些该怎么表述出来.
- 掌握学术语言:不要用大白话来写作, 掌握学术语言
- 掌握排版技巧
1.4 赛前准备
1.5 赛题选择
1.5.1 赛题类型
-
预测类
需要学习的知识:
-
评价类
需要的知识:
-
机理分析类
需要学习的知识:
-
优化类赛题
需要的知识:
1.5.2 ABC赛题建议
1.6 学会查询
1.6.1 百度搜索技巧
一般搜索的只是模糊查询,有其他字体将其拆开
-
完全匹配
搜索:查询词的外边加上双引号""
- 引号中英文均可
- 例如搜索“CT参数标定”,得到的结果不是分别带有“CT”或“参数标定”的网页
-
标题
必含关键词:查询词前加上intitle:- 冒号为英文输入下的
- 例如搜索intitle:CT参数标定,则搜索结果里
每一个标题
都会带有“CT参数标定”
-
搜索文档
:例如查询词后空格再输入filetype:文件格式(doc/pdf/xls/等等)- 例如搜索:线性规划filetype : pdf
- 得到的就都是
pdf版的资料
-
去掉不想要的
:查询词后面加空格后加减号与关键字- 例如
搜索后不想看百度文库的东西
,搜索线性规划filetype:pdf -百度文库
- 例如
1.6.2 查文献
1.6.3 数据预处理
1.7 建模全过程
- 什么是模型
- 建模过程
- 模型的建立
- 模型的求解
- 模型的求解
- 不同的小问
二、数模论文
2.1 论文排版
2.2 标题怎么写
2.3 摘要怎么写
-
摘要开头段
-
中间段
-
总结段
-
摘要关键词
2.4 参考文献
例子:
- 数模只用第一个,复制
2.5 公式编辑
- word
- mathpix
- axmath
巧用表格:
最省事的公式编辑与排版:
2.6 三线表的制作与编号
2.7 图片绘制
- AxGlyph(收费)图示
- APache ECharts
- 流程图、思路图
- 函数关系图
- 物理示意图
- 地理空间图
反例: