抽屉原理

  把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为:

第一抽屉原理:把(m*n1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m1)个物体。

  使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。

  例1 123,…,100100个数中任意挑出51个数来,证明在这51个数中,一定:

  (1)有2个数互质;

  (2)有2个数的差为50

  (3)有8个数,它们的最大公约数大于1

  证明:(1)将100个数分成50组:

  {12}{34},…,{99100}

  在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。

  (2)将100个数分成50组:

  {151}{252},…,{50100}

  在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50

  (3)将100个数分成5组(一个数可以在不同的组内):

  第一组:2的倍数,即{24,…,100}

  第二组:3的倍数,即{36,…,99}

  第三组:5的倍数,即{510,…,100}

  第四组:7的倍数,即{714,…,98}

  第五组:1和大于7的质数即{11113,…,97}

  第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1

  例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。

  证明:因1996÷4499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

  

  得到500个余数r1r2,…,r500。由于余数只能取012,…,499499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0111000,又49910是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。

  3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。

  分析:注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。

  解:将礼堂中的99人记为a1a2,…,a99,将99人分为3组:

  (a1a2,…,a33),(a34a35,…,a66),(a67a68,…,a99),将3组学生作为3个抽屉,分别记为ABC,并约定A中的学生所认识的66人只在BC中,同时,BC中的学生所认识的66人也只在ACAB中。如果出现这种局面,那么题目中所说情况就可能出现。

  因为礼堂中任意4人可看做4个苹果,放入ABC三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。

  

  4 如右图,分别标有数字12,…,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

  分析:此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。

  解:内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。

  注意到一环每转动45°角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

  例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?

  解:把2020.1克之间的盘子依重量分成20组:

  第1组:从20.000克到20.005克;

  第2组:从20.005克到20.010克;

  ……

  第20组:从20.095克到20.100克。

  这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。

  6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

  分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。

  解:依顺时针方向将筹码依次编上号码:12,…,100。然后依照以下规律将100个筹码分为20组:

  (121416181);

  (222426282);

  ……

  (20406080100)。

  将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×201,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。

  下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:

第二抽屉原理:把(m n-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

  例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。

  分析:将这个问题加以转化:

  

  如右图,将同色的3个筹码ABC置于圆周上,看是否能用另外2个筹码将其隔开。

  解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。

  8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?

  解:不能。

  如右图将12条棱分成四组:

    

  第一组:{A1B1B2B3A3A4}

  第二组:{A2B2B3B4A4A1}

  第三组:{A3B3B4B1A1A2}

  第四组:{A4B4B1B2A2A3}

  无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。

  下面我们讨论抽屉原理的一个变形——平均值原理。

  我们知道n个数a1a2,…,an的和与n的商是a1a2,…,ann个数的平均值。

平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a

  9 圆周上有2000个点,在其上任意地标上012,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999

  解:设圆周上各点的值依次是a1a2,…,a2000,则其和

  a1a2+…+a2000=0+1+2++1999=1999000

  下面考虑一切相邻三数组之和:

  (a1a2a3+a2a3a4)+…+(a1998+a1999a2000)+(a1999a2000a1)+(a2000a1a2

  =3a1a2+…+a2000

  =3×1999000

  这2000组和中必至少有一组和大于或等于

  但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999

  10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?

  解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少 房间就打不开,因此90个人就无法按题述的条件住下来。

  另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。

  最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。

  11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。试证明:无论怎样涂法,至少存在一个四角同色的长方形。

  证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。

  下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。这有两种可能:

  (1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。

  (2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。

  我们先考虑这个3×7的长方形的第一行。根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第14列。

  再考虑第二行的前四列,这时也有两种可能:

  (1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。

  (2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。不妨设这3个小方格就在第二行的前面3格。

  下面继续考虑第三行前面3格的情况。用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。

  总之,对于各种可能的情况,都能找到一个四角同色的长方形。

  12 试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?

  解:设每题的三个选择分别为abc

  (1)若参加考试的学生有10人,则由第二抽屉原理知,第一题答案分别为abc的三组学生中,必有一组不超过3人。去掉这组学生,在余下的学生中,定有7人对第一题的答案只有两种。对于这7人关于第二题应用第二抽屉原理知,其中必可选出5人,他们关于第二题的答案只有两种可能。对于这5人关于第三题应用第二抽屉原理知,可以选出4人,他们关于第三题的答案只有两种可能。最后,对于这4人关于第四题应用第二抽屉原理知,必可选出3人,他们关于第四题的答案也只有两种。于是,对于这3人来说,没有一道题目的答案是互不相同的,这不符合题目的要求。可见,所求的最多人数不超过9人。

  另一方面,若9个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同。

  

  所以,所求的最多人数为9人。

练习13

  1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说得对吗?为什么?

  2.现有64只乒乓球,18个乒乓球盒,每个盒子里最多可以放6只乒乓球,至少有几个乒乓球盒子里的乒乓球数目相同?

  3.某校初二年级学生身高的厘米数都为整数,且都不大于160厘米,不小于150厘米。问:在至少多少个初二学生中一定能有4个人身高相同?

  4.12,…,100100个数中任意选出51个数,证明在这51个数中,一定:

  (1)有两个数的和为101

  (2)有一个数是另一个数的倍数;

  (3)有一个数或若干个数的和是51的倍数。

  5.3×7的方格表中,有11个白格,证明

  (1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;

  (2)只有一个白格的列只有3列。

  6.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?

  7.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这条流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

  8.9名数学家,每人至多能讲3种语言,每3人中至少有2人能通话。求证:在这9名中至少有3名用同一种语言通话。

 

 

 

 

 

练习13

  1.对。解:因为49-3=3×(100-86+1+1,即46=3×15+1,也就是说,把从100分至86分的15个分数当做抽屉,49-3=46(人)的成绩当做物体,根据第二抽屉原理,至少有4人的分数在同一抽屉中,即成绩相同。

  2.4个。解:18个乒乓球盒,每个盒子里至多可以放6只乒乓球。为使相同乒乓球个数的盒子尽可能少,可以这样放:先把盒子分成6份,每份有18÷6=3(只),分别在每一份的3个盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3个盒子中放了1只乒乓球,3个盒中放了2只乒乓球……3个盒子中放了6只乒乓球。这样,18个盒子中共放了乒乓球

  (1+2+3+4+5+6)×3=63(只)。

  把以上6种不同的放法当做抽屉,这样剩下64-63=1(只)乒乓球不管放入哪一个抽屉里的任何一个盒子里(除已放满6只乒乓球的抽屉外),都将使该盒子中的乒乓球数增加1只,这时与比该抽屉每盒乒乓数多1的抽屉中的3个盒子里的乒乓球数相等。例如剩下的1只乒乓球放进原来有2只乒乓球的一个盒子里,该盒乒乓球就成了3只,再加上原来装有3只乒乓球的3个盒子,这样就有4个盒子里装有3个乒乓球。所以至少有4个乒乓球盒里的乒乓球数目相同。

  3.34个。

  解:把初二学生的身高厘米数作为抽屉,共有抽屉

  160-150+1=11(个)。

  根据抽屉原理,要保证有4个人身高相同,至少要有初二学生

  3×11+1=34(个)。

  4.证:(1)将100个数分成50组:

  {1100},{299},…,{5051}。

  在选出的51个数中,必有两数属于同一组,这一组的两数之和为101

  (2)将100个数分成10组:

  {1,2,4,8,16,32,64, 3,6,12,24,48,96,

  {5,10,20,40,80, 7,14,28,56,

  {9,18,36,72, 11,22,44,88,

  {13,26,52, 15,30,60,,

  {49,98, {其余数}。

  其中第10组中有41个数。在选出的51个数中,第10组的41个数全部选中,还有10个数从前9组中选,必有两数属于同一组,这一组中的任意两个数,一个是另一个的倍数。

  (3)将选出的51个数排成一列:

  a1a2a3,…,a51

  考虑下面的51个和:

  a1a1+a2a1+a2+a3,…,

  a1+a2+a3++a51

  若这51个和中有一个是51的倍数,则结论显然成立;若这51个和中没有一个是51的倍数,则将它们除以51,余数只能是12,…,50中的一个,故必然有两个的余数是相同的,这两个和的差是51的倍数,而这个差显然是这51个数(a1a2 a3,…,a51)中的一个数或若干个数的和。

  5.证:(1)在其余4列中如有一列含有3个白格,则剩下的5个白格要放入3列中,将3列表格看做3个抽屉,5个白格看做5个苹果,根据第二抽屉原理,5=2×3-1)个苹果放入3个抽屉,则必有1个抽屉至多只有(2-1)个苹果,即必有1列只含1个白格,也就是说除了原来3列只含一个白格外还有1列含1个白格,这与题设只有1个白格的列只有3列矛盾。所以不会有1列有3个白格,当然也不能再有1列只有1个白格。推知其余4列每列恰好有2个白格。

  (2)假设只含1个白格的列有2列,那么剩下的9个白格要放入5列中,而9=2×5-1,由第二抽屉原理知,必有1列至多只有2-1=1(个)白格,与假设只有2列每列只1个白格矛盾。所以只有1个白格的列至少有3列。

  6.能。

  解:开会的“人次”有 40×10=400(人次)。设委员人数为N,将“人次”看做苹果,以委员人数作为抽屉。

  若N60,则由抽屉原理知至少有一个委员开了7次(或更多次)会。但由已知条件知没有一个人与这位委员同开过两次(或更多次)的会,故他所参加的每一次会的另外9个人是不相同的,从而至少有 7×9=63(个)委员,这与N60的假定矛盾。所以,N应大于60

  7.20轮。

  解:如果培训的总轮数少于20,那么在每一台机器上可进行工作的工人 果这3个工人某一天都没有到车间来,那么这台机器就不能开动,整个流水线就不能工作。故培训的总轮数不能少于20

  另一方面,只要进行20轮培训就够了。对3名工人进行全能性培训,训练他们会开每一台机器;而对其余5名工人,每人只培训一轮,让他们每人能开动一台机器。这个方案实施后,不论哪5名工人上班,流水线总能工作。

  8.证:以平面上9个点A1A2,…,A9表示9个数学家,如果两人能通话,就把表示他们的两点联线,并涂上一种颜色(不同的语言涂上不同颜色)。此时有两种情况:

  (19点中有任意2点都有联线,并涂了相应的颜色。于是从某一点A1出发,分别与A2A3,…,A9联线,又据题意,每人至多能讲3种语言,因此A1A2A1A3,…,A1A9中至多只能涂3种不同的颜色,由抽屉原理知,这8条线段中至少有2条同色的线段。不妨设A1A2A1A3是同色线段,因此A1A2A33点表示的3名数学家可用同一种语言通话。

  (29点中至少有2点不联线,不妨设是A1A2不联线。由于每3人中至少有两人能通话,因此从A1A2出发至少有7条联线。再由抽屉原理知,其中必有4条联线从A1A2 出发。不妨设从A1出发,又因A1至多能讲3种语言,所以这4条联线中,至少有2条联线是同色的。若A1A3A1A4同色,则A1A3A43点表示的3名数学家可用同一种语言通话。

 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值