pandas如何用3000条弹幕对课程视频进行初步数据分析|时间分析&可视化&用户画像

本文详细描述了对B站课程视频弹幕数据的处理过程,包括数据整合、时间维度(月、周、时)分析,以及用户画像(弹幕数量、等级分布和内容分析)。结果显示,12月3月弹幕最多,下午3点平均弹幕最多,且主要用户集中在四级和五级。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.数据处理

首先是将收集的弹幕数据进行整合,由于课程视频有5个part,所以要将5个part的弹幕整合到一起。

通过os方法将文件夹中的表格名称保存到列表excel_list中,便于后续的整合。

再通过concat方法将5个part合并于danmu变量中,数据的整合工作便完成了。

2.时间处理

下一步便是进行时间处理,将ctime中的时间戳进行分解

再将分解结果并入danmu变量得到相应结果

3.时间分析

3.1月份分析

在分析前将数据按月份进行聚合分组

再之后便可得到相应的折线图

由上图便可以得出在12月份中3月份的弹幕数量较多

3.2星期分析

同上可得

看来周六大家都休息了(*^_^*)

3.3小时分析

同上可得

可以得出在下午三点平均弹幕数量最多

4.用户画像

4.1用户处理

首先是将弹幕数据按照uid进行分组,并统计各个用户的弹幕数量

再将用户的等级连接至右侧

4.2弹幕内容

首先将uid进行分组,再按降序进行排序

再来看看数量第一名都发了些什么(*^_^*)

同理可得数量第二名

4.3等级分析

首先按照level进行排序,计算出有多少条id

接着进行一个柱状图的图表描绘

可见弹幕大部分来自于四级和五级的用户,大部分发弹幕的观众都是B站的粘性用户、

为了进一步验证,绘制以用户计数的柱状图

可见分布几乎是一样的,上述结论可以得到落实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值