Node.js毕业设计基于协同过滤算法的电影推荐系统(Express+源码+调试)

本文介绍了在互联网背景下,电影推荐系统的发展需求,重点探讨了协同过滤算法的应用及其挑战。项目采用Node.js、Express、Vue.js等技术构建电影推荐系统,结合MySQL5.7数据库,通过前端与后端的协作,优化用户体验并解决数据问题。
摘要由CSDN通过智能技术生成

本系统(程序+源码)带文档lw万字以上  文末可获取本课题的源码和程序

系统程序文件列表

系统的选题背景和意义

选题背景: 随着互联网的迅猛发展,电影产业也迅速转向数字化和网络化。人们不再仅仅依赖电影院来观看电影,更多的选择通过网络平台进行观影。然而,面对海量的电影资源,如何快速找到自己喜欢的电影成为了一个难题。为了解决这个问题,电影推荐系统应运而生。电影推荐系统可以根据用户的观影历史和喜好,推荐相应的电影,大大提高了用户的观影效率。其中,协同过滤算法是推荐系统中最常用的一种算法,它

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值