算法须简单化 -- 有时学用小学生的思维并不是一种退化

刚巧看到老曾研究“也说说算法的力量”,说明数论方法很容易就能获取到方程的所有解。不过就老曾提出的问题,其实使用计算器来求解不到半分钟就能做出来。

问题是:
就是要找一个数出来,把这个数个位上的数字挪到最前面去,例如 123 变成 312,12345变成51234。但是还要求得到的“新数”要是原来数的两倍。

文章作者假定该数为X,末位数为Y,则需求就成了

(1)     2*X = Y*10 (n-1) +( X-Y)/10
化简结果就是
(2)     19X +Y= Y 10 n

 所以,求解结果是:Y除以19的小数循环位(可多次循环)。其中Y=2-9,如下:

2/19=>105263157894736842, 105263157894736842105263157894736842,...
3/19=>157894736842105263, 157894736842105263157894736842105263,...
4/19=>210526315789473684, 210526315789473684210526315789473684,...
5/19=>263157894736842105, 263157894736842105263157894736842105,...
6/19=>315789473684210526, 315789473684210526315789473684210526,...
7/19=>368421052631578947, 368421052631578947368421052631578947,...
8/19=>421052631578947368, 421052631578947368421052631578947368,...
9/19=>473684210526315789, 473684210526315789473684210526315789,...

所以,简单的问题就应该用简单的方法,如小学生可以用正推(2/2=1/2=.5...)或反推(2*2=4*2=8...)的方法,只是人们东西学多了,才会思考各种高深的算法,有时候,还不如小学生做的快。

但总是有些人对《小学生能解的题目》不服,如
N位数X,2*X,3*X,4*X,5*X,6*X也是由这N位数组成,求N最小值?
如果7*X,8*X,9*X也是由这N位数组成呢?(有时候答案远在天边)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值