python实现感知器

该博客通过Python实现了一个简单的神经网络,用于模拟逻辑运算中的AND和OR操作。通过迭代更新权重,最终得到能正确执行这两种逻辑运算的权重值。在AND运算中,网络成功学习到了权重[-0.59448, 0.59488, 0.59482],而在OR运算中,权重为[-0.00083, 0.70753, 0.70791]。这些权重可以用于预测输入的逻辑结果。
摘要由CSDN通过智能技术生成

import numpy as np
x1 = np.array([0, 0, 1, 1])
x2 = np.array([0, 1, 0, 1])
# and运算
y = np.array([0, 0, 0, 1])
# or运算
y1 = np.array([0, 1, 1, 1])
# 设初始值
w0 = -0.8
w1 = 0.5
w2 = 0.5
alpha = 0.001


# 阶跃函数
def fx(x1, x2):
    return w1*x1+w2*x2+w0


# 激活函数
def hy(xx1, xx2):
    if(fx(xx1,xx2)>0.5):
        return 1
    else:
        return 0


# and运算循环5000次
for i in range(5000):
    w0 = w0 - (fx(x1[i % 4], x2[i % 4]) - y[i % 4]) * alpha
    w1 = w1 - (fx(x1[i % 4], x2[i % 4]) - y[i % 4]) * x1[i % 4] * alpha
    w2 = w2 - (fx(x1[i % 4], x2[i % 4]) - y[i % 4]) * x2[i % 4] * alpha
    # 如果偏导小于0.001,输出此时权重及偏导
    if (abs(fx(x1[i % 4], x2[i % 4]) - y[i % 4]) < 0.001 and abs(
            (fx(x1[i % 4], x2[i % 4]) - y[i % 4]) * x1[i % 4]) < 0.001 and abs(
            (fx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值