
前言
导引:Hello,各位小伙伴们!你肯定听说过汉诺塔的故事吧。故事要从头说起,从前有一座庙,庙里有三个柱子,柱A,柱B,柱 C。柱A有64个盘子,从上往下盘子越来越大。要求庙里的老和尚把这64个盘子全部移动到柱子C上。移动的时候始终只能小盘子压着大盘子。而且每次只能移动一个。现在问题来了,老和尚知道将柱A上面前n个盘子从柱A搬到柱C搬动方法。要求移动次数最少。这个时候我们应该怎么办呢?
想要帮助老和尚解决这个问题,首先你得明白什么是递归?
递归到底是什么呢?
用书面语来说,就是把问题转化规模缩小了的同类问题的子问题。然后递归调用函数来表示问题的解。
其实你可以类比你的人生目标来理解,你的终极目标是做一个对社会有用的人,所以为了这个目标你将自己的大目标进行了分解,只有先完成最小的目标,才能实现较大的目标,环环相扣。
在写递归函数时必须明确的条件:
1)问题规模大——划分小规模。
2)函数自己调用自己。(通过形参,体现问题规模缩小的过程)
3)函数退出条件。
一、引入:1+1+…+1
提示:传统方式进行求和:
public static int getSum(int n){
int result=0;
for(int i=0;i<n;i++){
result+=1;
}
return result;
}
提示:使用递归方式进行求和:
public static int getSum(int n){
if(n==1){
return 1;
}
return getSum(n-1);
}
public static void main(String[] args) {
getSum(5);
}
}
在这里,你一定要注意函数退出条件的设置哦!当n=1,也就是getSum(1)时,应该返回1,然后就可以得到getSum(2)的值了,逐层返回。

二、理解如何使用递归求阶乘

代码如下:
public static int fac(int n){
//退出条件 递归深度
if(n==1){
return 1;
}
return fac(n-1)*n;
}
public static void main(String[] args) {
System.out.println(fac(3));
}
三、斐波那契数列(fabnic)
思路:当前这一项为前两项之和。

public static int fabnic(int n){
if(n==1||n==2){
return 1;
}
return fabnic(n-1)+fabnic(n-2);
}
public static void main(String[] args) {
System.out.println(fabnic(5));
}
彩蛋:在下次的blog中将和你一起探讨如何使用递归函数对二分查找进行优化。

本文介绍了递归的概念,通过实例解析如何使用递归解决问题,包括求和、计算阶乘和实现斐波那契数列。强调了递归函数的关键要素:问题规模缩小、函数自我调用及退出条件设定。并预告了下篇将讨论递归在二分查找中的应用。
2928

被折叠的 条评论
为什么被折叠?



