巧妙使用递归函数

本文介绍了递归的概念,通过实例解析如何使用递归解决问题,包括求和、计算阶乘和实现斐波那契数列。强调了递归函数的关键要素:问题规模缩小、函数自我调用及退出条件设定。并预告了下篇将讨论递归在二分查找中的应用。

在这里插入图片描述


前言

导引:Hello,各位小伙伴们!你肯定听说过汉诺塔的故事吧。故事要从头说起,从前有一座庙,庙里有三个柱子,柱A,柱B,柱 C。柱A有64个盘子,从上往下盘子越来越大。要求庙里的老和尚把这64个盘子全部移动到柱子C上。移动的时候始终只能小盘子压着大盘子。而且每次只能移动一个。现在问题来了,老和尚知道将柱A上面前n个盘子从柱A搬到柱C搬动方法。要求移动次数最少。这个时候我们应该怎么办呢?在这里插入图片描述
想要帮助老和尚解决这个问题,首先你得明白什么是递归?

递归到底是什么呢?
       用书面语来说,就是把问题转化规模缩小了的同类问题的子问题。然后递归调用函数来表示问题的解。
       其实你可以类比你的人生目标来理解,你的终极目标是做一个对社会有用的人,所以为了这个目标你将自己的大目标进行了分解,只有先完成最小的目标,才能实现较大的目标,环环相扣。
在写递归函数时必须明确的条件:
      1)问题规模大——划分小规模。
       2)函数自己调用自己。(通过形参,体现问题规模缩小的过程)
       3)函数退出条件。


一、引入:1+1+…+1

提示:传统方式进行求和:

    public static int getSum(int n){
        int result=0;
        for(int i=0;i<n;i++){
            result+=1;
        }
        return result;
    }

提示:使用递归方式进行求和:

  public static int getSum(int n){
        if(n==1){
            return 1;
        }
        return getSum(n-1);
    }
    
    public static void main(String[] args) {
        getSum(5);
    }
}

在这里,你一定要注意函数退出条件的设置哦!当n=1,也就是getSum(1)时,应该返回1,然后就可以得到getSum(2)的值了,逐层返回。
在这里插入图片描述

二、理解如何使用递归求阶乘

在这里插入图片描述

代码如下:

    public static int fac(int n){
        //退出条件  递归深度
        if(n==1){
            return 1;
        }
        return fac(n-1)*n;
    }
    public static void main(String[] args) {
        System.out.println(fac(3));
    }

三、斐波那契数列(fabnic)

思路:当前这一项为前两项之和。
在这里插入图片描述

   public static int fabnic(int n){
        if(n==1||n==2){
            return 1;
        }
        return fabnic(n-1)+fabnic(n-2);
    }
    public static void main(String[] args) {
        System.out.println(fabnic(5));
    }

彩蛋:在下次的blog中将和你一起探讨如何使用递归函数对二分查找进行优化。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值