一.MobileNetV1
对于MoblieNetV1的理解比较直观的解释是:MobileNetV1就是把VGG中的标准卷积层换成深度可分离卷积就可以了。
可分离卷积主要有两种类型:空间可分离卷积和深度可分离卷积。深度可分离卷积(depthwise separable convolution)就是将普通卷积拆分成为一个深度卷积和一个逐点卷积。
相关代码练习
二.MobileNetV2
特点:1.相比于MobileNetV1,先进行了1x1的卷积进行升维,目的在于获得更多特征,然后用3x3的空间卷积,最后再用1x1降维。核心思想是升维再降维,参数量更少。
2.为了避免Relu对特征的破坏,在在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,再利用1x1卷积降维后,不再进行Relu6层,直接进行残差网络的加法。
相关代码练习:
三.HybirdSN高光谱分类网络
2D卷积和3D卷积的区别:
2D卷积:
在二维卷积中,输入的大图片与二维的卷积核进行卷积,输出的是一张二维的小图片(这个小图片也叫做特征矩阵、特征图…),当然也只能提取二维的平面特征。如果数据类型其本身的特征分布是三维的,那么仅仅用二维卷积提取到的特征就会不全面,都没有完全利用输入数据。
3D卷积:
三维卷积可以同时提取三个维度的数据的特征,能同时进行空间和空间特征表示,但数据计算量要比二维卷积大不少。由于能处理三维的数据特征,所以三维卷积可以用来处理视频上的连续帧,立体图像的图层等(类似于高光谱图像)。
每次分类的结果不一样是因为:1.神经网络的初始化权重。2.网络的随机性部分Drop out。
代码练习: