基于比较排序时间复杂度下界

对于 n 个待排序元素

  1. 经过一次比较后,其中两个元素的顺序被确定,所以可能的正确结果剩余n!/2种;

    • 依次类推,直到经过 m 次比较,剩余可能性n!/(2m)种;
    • 直到 n!/(2m)1 时,结果只剩下一种,此时 m O(nlogn)

      根据Stirling’s approximation可知: m=O(nlogn)

    • 转载自:基于比较的排序,时间复杂度下界是o(nlogn)的小证明

      斯特林公式: n!2πn(n/e)n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值