004基于传统检测算法hog+svm实现目标检测

本文介绍了如何使用基于HOG(HistogramofOrientedGradients)和SVM(支持向量机)的传统检测算法在Python中实现目标检测,涉及数据集准备、模型训练以及通过pyqt创建的可视化界面。详细步骤包括训练过程和代码下载地址。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​直接上效果图:

代码下载和视频演示地址:

004基于传统检测算法hog+svm实现目标检测_哔哩哔哩_bilibili

代码展示:

 数据集在data文件夹下

需要检测的目标对象数据集放在positive文件夹下

 不需要的检测对象放在negative文件夹下

 运行01train_SVM.py即可训练

训练结束后会保存模型在weights文件夹下

运行02pyqt.py会有一个可视化的界面,通过点击按钮加载图片识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值