Java 蓝桥Fibonacci数列与黄金比例

【问题描述】
Fibonacci数列是非常著名的数列
F[1]=1,
F[2]=1,
对于i>3,F[i]=F[i-1]+F[i-2]
Fibonacci数列有个标殊的性质,前一项与后一项的比值,F[i]/F[i+1]
会趋近于賁金分割。
为了验证这一性质,给定正整数N,请你计算F[N]/F[N+1],并保留8位
输入格式
个正整数N。(1≤N≤200000000
输出格式
FN/FN+1]。答案保留8位小数。
样例输入
【样例输出】
50
题目分析:直接按照题目的思路来打。
代码如下;
import java.util.Scanner;

public class cxl {

public static void main(String[] args)  {
	int N=0;
	Scanner input=new Scanner(System.in);
	N=input.nextInt();
	double F[]=new double[20];
	F[1]=1;F[2]=1;
	for(int i=3;i<F.length;i++) {
		F[i]=F[i-1]+F[i-2];
	}
	double sum=F[N]*1.0/F[N+1];
	System.out.printf("%.8f",sum);//转化为8位小数
}

}
如有更好的算法,请指导,谢谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值