695. Max Area of Island

问题: Given a non-empty 2D array grid of 0’s and 1’s, an island is a group of 1’s (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.

Find the maximum area of an island in the given 2D array. (If there is no island, the maximum area is 0.)

Example 1:

[[0,0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,1,1,0,1,0,0,0,0,0,0,0,0],
 [0,1,0,0,1,1,0,0,1,0,1,0,0],
 [0,1,0,0,1,1,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,1,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,1,1,0,0,0,0]]

Given the above grid, return 6. Note the answer is not 11, because the island must be connected 4-directionally.
Example 2:

[[0,0,0,0,0,0,0,0]]

Given the above grid, return 0.
Note: The length of each dimension in the given grid does not exceed 50.

问题解决: 我的思路这是连通性问题,想要使用Union-find进行解决。之后通过同学点拨告诉我用遍历的方法,对其中一个位置的四个方向,进行遍历判断。把值为1的位置置0,不断叠加。

class Solution {
public int maxAreaOfIsland(int[][] grid) {

        int m = grid.length, n = grid[0].length, maxarea = 0;
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                maxarea = Math.max(maxarea, dfs(i, j, grid));
        return maxarea;
    }

    private int dfs(int i, int j, int[][] grid) {
        return (i < 0 || grid.length <= i || j < 0 || grid[0].length <= j || grid[i][j] <= 0) ? 0
            : grid[i][j]-- + dfs(i, j+1, grid) + dfs(i+1, j, grid) + dfs(i, j-1, grid) + dfs(i-1, j, grid);
    }
}

用时1ms,看了一下别人的代码,引用:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        if(root == null) return 0;
        return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
    }
}

发现这种方法非常简洁,遇到空结点就返回0,否则就在计算中+1,以此来统计个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值