分治思想与分治算法的区别

引言:分治,即分而治之,是“先分解、再各个击破”的意思,分为“分”和“治”两个步骤。然而在计算机科学中,当我们介绍分治算法的时候,我们往往说分治算法分为3步,即“分解、解决、合并”。为什么明明分治思想只有2步,而分治算法却有3步,分治思想与分治算法有什么区别和联系呢?

“分治思想”作为一种抽象的哲学或方法论,其本身的核心确实是“分”和”治”这两个步骤。而“使用分治思想的算法”是一种具体的实现,它把对原问题的求解分解为子问题的求解,并通过子问题的解构建原问题的解,这个构建的过程我们称之为“合并”。如果仅仅是获得子问题的解,那么就只有2步,如果要获得原问题的解,那么就需要第3步。

我们可以这样比喻:

分治思想:就像“先分解,再逐个击破”的战略思想。

分治算法:则是应用这一思想,包含了“分解、击破、组合成果”的具体战术方案。

1. 分治思想本身:纯粹的“战略”

在最抽象、最哲学的层面上,分治(Divide and Conquer)是一种处理复杂问题的策略:

分(Divide):将一个大而复杂的问题分解成若干个规模更小、结构相同、更容易解决的子问题。

治(Conquer):递归地解决这些子问题。如果子问题仍然足够大,就继续分解;如果子问题已经足够小、足够简单,就直接求解。

在这个层面,它只有两步。分治思想本身关注的是“如何通过分解来降低问题复杂度”,它并不规定解决子问题后该怎么办。“合并”并不是思想的一部分,而是实现该思想时产生的必然需求。

2. 分治算法:具体的“战术”

当我们将这种思想转化为具体的算法(特别是用于计算问题的算法)时,情况就发生了变化。绝大多数情况下,我们分解问题不是为了解决子问题本身,而是为了利用子问题的解来构造原问题的解。

因此,一个完整的分治算法几乎总是包含三个步骤:

  • 分解(Divide):将原问题分解为若干个规模较小的子问题。
  • 解决(Conquer):递归地求解子问题。若子问题规模足够小,则直接求解。
  • 合并(Combine):将子问题的解合并成原问题的解。

为什么“合并”这一步在算法中不可或缺?

因为“分”和“治”之后,我们得到的是一个个孤立的子问题的答案。而原始问题是一个整体,它需要一个统一的答案。“合并”就是搭建从子答案通往总答案的桥梁。没有这一步,分治就失去了意义。

让我们用经典的归并排序(Merge Sort) 来验证:

  • 分(Divide):将当前数组一分为二,得到左半部分和右半部分两个子数组。
  • 治(Conquer):递归地对左半部分和右半部分进行排序。
  • 合(Combine):这是最关键的一步!将两个已经排序好的子数组合并成一个新的有序数组。如果没有这一步,即使左右两边都排好了序,整个数组依然是无序的。

在这个例子中,“合并”不仅仅是步骤之一,它甚至是整个算法的核心和耗时的操作。

3. 分治算法总是有合并这一步吗?

从逻辑上讲,分治算法的第二步只是获得了子问的解,而我们的最终目标是要获得原问题的解,所以从子问题的解到原问题的解,一定需要一个过程。但是,在某些特殊情况下,子问题的解就是原问题的解,因而也许用文字描述时,可以用一句“因而原问题的解就是xxx”来概括,而在代码里,则没有这一步。换句话说,合并这一步,在逻辑上是存在的,而在具体操作中(包括代码中)则可能不存在(或者说是隐式的)。

例如,在快速排序中:

  • 分:选择一个基准(pivot),进行分区(Partition)操作。这个操作极其关键:它将数组重排,使得所有小于基准的元素在其左边,大于基准的在其右边。请注意,这个操作本身就在“构建”最终有序数组的雏形! 基准元素被放到了它最终应该在的位置上。
  • 治:递归地对基准左边和右边的子数组进行快速排序。
  • 合:需要合并吗?不需要。为什么?因为“合并”的工作已经在分区(Partition) 这一步隐式地完成了!当左右子数组都排好序时,由于基准已经在正确位置,且左边全小于右边,所以整个数组天然就是有序的。无需任何额外的组合操作。

快速排序的“分”是聪明的、做了大量工作的“分”,而归并排序的“分”是愚蠢的、简单的“分”。

再比如,在二分查找中:

  • 分:选择中间元素,将问题分为“左半部分”、“中间元素”、“右半部分”三个子问题。
  • 治:判断目标值与中间元素的关系。
    1. 如果相等,问题已解决,返回当前索引。
    2. 如果小于,选择左半部分进行递归。
    3. 如果大于,选择右半部分进行递归。
  • 合:需要合并吗?不需要。因为算法不是在“组合”答案,而是在“选择”答案。最终的解要么是中间元素本身,要么是某一个子问题的解。它只是简单地将子问题的解(或空)返回给上级调用者。

二分查找的“合”可以理解为一种“选择”或“传递”,而不是“合并”。

4. 总结

分治思想是战略,思想本身只有2步;分治算法是战术,分治算法采用了分治思想,把大问题的求解转化成小问题的求解,但最终目标是要得到大问题的解,因而需要3步。

特性

分治思想(战略层面)

分治算法(战术层面)

核心步骤

1. 分(Divide)

2. 治(Conquer)

1. 分解(Divide)

2. 解决(Conquer)

3. 合并(Combine)

关系

是一种抽象的哲学和方法论

是应用该思想的具体实现方案

必要性

“合并”不是该思想的必要组成部分

“合并”是绝大多数分治算法不可或缺的关键步骤,用于构建最终解

例子

解决难题时,分解成几个小问题分别解决

归并排序、快速排序、二分算法、最近点对问题等

特例

思想本身包容不需要合并的情况

快速排序、二分查找等算法是例外,它们不需要合并步骤

大家有什么不同想法吗?欢迎留言讨论。

本文为学漄乐码学堂所撰。要了解学漄乐码更多信息,请查看博主简介。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值