文本文件中输入“abcde”,文件大小为多少字节?

在一个文本文件中输入“abcde”,文件占多少个字节呢?

你可能想不到,一共就只有5个字节,也就是说,整个文件中就只有“abcde”5个字符,没有任何文件头信息,也没有类似EOF这样的文件结束符。那么像文件编码信息、文件结束标志等,这些信息是存在什么地方的呢?我们一个一个来解答。

文件编码信息在哪里?

如果在VS Code中创建一个C++源代码文件,在其中添加了一些中文注释,之后在Dev-C++中打开这个文件时,通常会看到一堆乱码。这表明,VS Code采用了某种编码而Dev-C++不知道。那么这个编码信息是存在哪里的呢?

计算机中通常使用BOM来存储编码信息。BOM是Byte Order Mark的首字母缩写,从这个名称可以看出,它其实描述的不是编码信息,而是字节序,即在多字节的情况下,哪个字节在前的问题。这个概念只有编码方式采用UTF-16和UTF-32时才有意义。

而简单的文本文件(如.txt、.cpp、.html等),在国际化的软件(如VS Code,Sublime Text)或Linux/macOS系统上,默认编码通常是UTF-8。而UTF-8没有字节序的问题,所以对于UTF-8编码,BOM是可选且通常不推荐的(除非在Windows的某些传统场景下)。绝大多数现代系统和软件(如Linux, macOS, 现代代码编辑器)在保存UTF-8文本文件时,默认不添加BOM。而这恰恰就是导致乱码的原因。

当Dev-C++ 打开文件时,因为没有BOM,它必须猜测或使用默认设置来确定编码。在中文Windows系统上,Dev-C++ 的默认编码可能是 GBK 或 GB2312,而VS Code通常使用的是UTF-8,所以就出现了乱码。

但是反过来,对于在Dev-C++中创建的文件,即使它采用了GBK 或 GB2312编码,VS Code也能正确识别,因为VS Code除了使用默认设置外,还会更进一步分析整个文件的字节序列,根据统计规律来推测文件的编码。例如,一个字节序列是否符合UTF-8的规则,或者是否符合某种常见语言的字符分布。

结论:简单的文本文件中,通常不存在BOM。

文件结束标志在哪里?

在C++中,我们可能会看到这样的代码:

int c;
while ((c = getchar()) != EOF) {
    putchar(c);
}

这很容易让人误以为,在文件最后存在一个叫做“EOF”的字符。但实际上,这个EOF不是从文件里读出来的字符,而是当函数读到文件末尾时,系统返回给程序的一个信号。

那么既然文件末尾没有任何标记,系统又是怎么知道函数已经读到了文件末尾了呢?答案是:文件系统通过文件的“元数据”来精确记录文件的大小(以字节为单位)。

这个过程是这样的,当你保存一个内容为“abcde”的文件时,文件系统会做两件事:

  • 在磁盘上分配空间,写入这5个字节:0x61 0x62 0x63 0x64 0x65。
  • 在文件的元数据(如inode)中,记录一个关键信息:文件大小 = 5 字节。

然后当一个程序(比如cat或你的C++程序)打开并读取这个文件时,操作系统知道文件从哪个位置开始。程序从位置0开始读,读第1个字节(a),位置变成1;读第2个字节(b),位置变成2;……,读第5个字节(e),位置变成5;当程序尝试读取下一个(第6个)字节时,操作系统会检查当前的读取位置(5)已经等于或超过了文件元数据中记录的大小(5)。此时,操作系统不会返回一个字节,而是会向程序发送一个 “文件结束”的信号或状态。

结论:文件里没有EOF字符,文件中只包含你写入的数据字节。

所以,在一个文本文件中输入“abcde”,文件的大小就是5字节。

本文为学漄乐码堂主撰写。如果您想要学到真正的知识,而不只是应试的技巧,欢迎留言跟我联系。

(写作不易,请大家点赞、关注、收藏、转发!)

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值