西瓜书《机器学习》课后答案——Chapter1

1.1 请查看西瓜书《机器学习》阅读笔记1——Chapter1_假设空间中列举的所有假设。现在只有西瓜1和西瓜4两个样本: 西瓜1为正例,找到假设空间中和它一致的假设:10,12,14,16,58,60,62,64 西瓜4为反例,找到假设空间中和它一致的假设:23,24,31,32,55,5...

2018-05-14 20:06:32

阅读数 2808

评论数 0

西瓜书《机器学习》课后答案——Chapter3

3.2 试证明,对于参数ωω\boldsymbol \omega,,对率回归的目标函数(3.18)是非凸的,但其对数似然函数(3.27)是凸的。 解答: 定理:设f(x)f(x)f(\boldsymbol x)是定义在非空开集D⊂RnD⊂RnD\subset \mathbb R^n上的二...

2018-05-14 20:05:26

阅读数 2394

评论数 0

支持向量机(一)——线性可分支持向量机

支持向量机(Support Vector Machine, SVM)是一种二分类模型。它的基本思想是间隔最大化。 1、线性可分支持向量机 给定训练集T={(x1,y1),(x2,y2),...,(xm,ym)}T={(x1,y1),(x2,y2),...,(xm,ym)}T=\{(\bol...

2018-05-14 20:02:31

阅读数 1787

评论数 0

极大似然估计——为什么对于离散属性,极大似然估计法得到的类条件概率等于频率?

极大似然估计就是最大化对数似然。 假设第c类有K个样本。属性取值为N种,表示为集合X,且取第i个属性值的样本共有kikik_i个,显然有∑i=1Nki=K.∑i=1Nki=K.\sum_{i=1}^N k_i=K. 极大似然估计首先假设P(x|c)=f(x,θc)P(x|c)=f(x,θc)P...

2018-04-03 00:01:58

阅读数 2678

评论数 0

西瓜书《机器学习》课后答案——chapter16_强化学习

1.用于K-摇臂赌博机的UCB(Upper Confidence Bound)方法每次选择Q(k)+UC(k)Q(k)+UC(k)最大的摇臂,其中Q(k)Q(k)为摇臂k当前的平均奖赏,UC(k)UC(k)为置信区间。例如:Q(k)+2lnnnk−−−−−√Q(k)+ \sqrt{\frac{2\...

2017-12-21 19:08:20

阅读数 2305

评论数 0

强化学习——值函数与Bellman方程

在强化学习中,agent和环境之间进行一系列交互:在每个时刻tt,根据环境的状态和奖励,agent采取某一行为;这个行为会作用到环境中,环境改变状态并对agent进行奖励。agent的目标是最大化累积奖励。1 MDP马尔可夫决策过程(Markov Decision Process, MDP)是对环...

2017-12-19 10:47:35

阅读数 14891

评论数 7

西瓜书《机器学习》课后答案——chapter14

1.试用盘式记法表示条件随机场和朴素贝叶斯分类器。2.证明图模型中的局部马尔科夫性:给定某变量的邻接变量,则该变量条件独立于其他变量。 解答: 这个问题以及第3题其实是不太严谨的。 根据李航《统计学习方法》p.193中概率无向图模型的定义: 概率无向图模型: 设有联合概率分布P(Y...

2017-12-05 17:44:10

阅读数 3047

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(十八)——参数初始化

5.3 参数初始估计理论上,估计公式可以给出似然函数局部最小值对应的参数。这样的话,我们怎么选择HMM参数的初始值使得局部最大是全局最大呢?对于上面的问题并没有直接的答案。经验表明,对pipi和AA进行随机初始化(满足随机以及非零约束)或者均匀初始化,在多数情况下都可以得到比较好的结果。但是对于B...

2017-12-05 12:12:59

阅读数 1854

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(十七)——多观测序列

5.2 多观测序列在第4节我们讨论了左右HMM(Bakis模型),这种模型中状态按序从t=1t=1时的状态1移动到t−Tt-T时的状态N。我们已经讨论了左右模型是怎么对状态转移矩阵施加约束的以及初始状态概率(45)-(48)。但是,左右模型的主要问题是不可能只用一个观测序列训练模型。这是因为模型中...

2017-12-05 11:59:00

阅读数 1881

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(十六)——放大

5 HMM的实现问题前面两节的讨论主要是关于HMM的理论以及模型的变体。这一节我们会讨论HMM的实现问题,包括放大、多观测序列、初始参数估计、数据丢失、模型大小以及类型的选择。对其中一些实现问题,我们可得到精确解析解;而对于其他问题,我们只能给出一些经验建议。5.1 放大为了理解在HMM参数估计过...

2017-12-05 10:06:45

阅读数 1831

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(十)——连续观测密度

4.1 连续观测密度目前为止我们的讨论中只考虑了观测是离散值的情况,这种情况下对每个状态可以使用离散概率密度。但是存在一些应用离散值是连续信号(比如向量)。虽然可以通过码本把连续信号量化,但是这种量化可能存在严重的退化。所以希望HMM中可以用连续观测密度。为了使用连续观测密度,必须对模型概率密度函...

2017-12-01 17:45:43

阅读数 2254

评论数 1

HMM经典介绍论文【Rabiner 1989】翻译(九)——HMM的类型

4. HMM的类型目前为止,我们只考虑了遍历或全连接HMM这种特殊情况,即所有的状态都可以由所有其他状态到达。严格来说,遍历模型是所有状态都可以由其他所有状态经过有限步到达。如图7(a)所示,对一个N=4N=4的这种模型,所有的aija_{ij}都大于0。于是对7(a)中的例子,我们有 A=⎡⎣...

2017-12-01 16:40:55

阅读数 1844

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(八)——学习问题

3.3 问题3的求解(学习问题)HMM的第三个问题——学习问题是最困难的一个,需要通过最大化观测序列的概率来调整模型参数(A,B,π)(A, B, \pi)。暂时还没有解析法来解决这个问题。事实上,给定一个有限观测序列作为训练数据,并不存在最优方法得到模型参数。但是,我们可以通过迭代法比如Baum...

2017-12-01 12:01:40

阅读数 493

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(七)——预测问题

3.2 问题2的求解(预测问题)有多种方法可以求解与观测序列相关的最优状态序列。难度在于最优状态序列的定义,因为有多种优化指标。比如,可以独立地为每个时刻tt选择最有可能的状态qtq_t。这个优化指标最大化正确状态的期望个数。定义变量 γt(i)=P(qt=Si|O,λ),(26)\gamma_...

2017-12-01 10:46:53

阅读数 718

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(六)——概率计算问题

3. HMM三类问题的求解方法3.1 问题1的求解方法给定模型λ\lambda,希望计算观测序列O=O1O2⋯OTO=O_1O_2\cdots O_T的概率,即P(O|λ)P(O|\lambda)。最直接的计算方式是枚举所有长度为TT的状态序列。对某个状态序列Q=q1q2⋯qT(12)Q=q_1q...

2017-11-30 22:22:21

阅读数 399

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(五)——HMM的三个基本问题

2.3 HMM的三个问题在上一小节给出了HMM的形式,在实际应用中还有三个基本问题需要解决,分别是:问题1:给定观测序列O=O1O2⋯OTO=O_1O_2 \cdots O_T和模型λ=(A,B,π)\lambda=(A, B, \pi),如何有效地计算P(O|λ)P(O|\lambda)?问题2...

2017-11-30 22:21:44

阅读数 967

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(四)——HMM的五个基本元素

2.2 HMM的基本元素通过上面的例子,我们知道了HMM是什么并且知道怎么把它应用到一些简单场景中。现在我们给出HMM基本元素的正式定义,并且解释模型是如何生成观测序列的。一个HMM包含:1)N,模型中的状态数。尽管状态是隐藏的,但是在很多实际应用中,状态经常被赋予一些物理意义。在抛硬币的实验中,...

2017-11-30 22:21:10

阅读数 474

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(三)——抛硬币实验和碗中的球实验

2.1 扩展到HMM目前我们介绍了Markov模型,其中每个状态和一个可观测(物理)事件相关。这种模型很难应用到很多实际问题中去。这一小节,我们拓展Markov模型,考虑观测是状态的概率函数的情况,这样得到的模型(称为HMM)是双随机过程,其中底层的随机过程是观测不到的,只能观测到生成观测序列的那...

2017-11-30 22:20:37

阅读数 527

评论数 2

HMM经典介绍论文【Rabiner 1989】翻译(二)——离散Markov过程

2. 离散Markov过程考虑一个系统,这个系统在任意时间处于N个离散状态S1,S2,⋯,SNS_1, S_2, \cdots, S_N中的某个状态,如图1所示(N=5N=5)。系统在每个时间点根据当前状态相关的概率值跳转到下一个状态。我们把状态跳转时间表示为t=1,2,⋯t=1, 2, \cdo...

2017-11-30 22:20:01

阅读数 423

评论数 0

HMM经典介绍论文【Rabiner 1989】翻译(一)——介绍

A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition Rabiner, 1989.尽管Markov统计方法或者Hidden Markov Model(HMM)在60年代后期70年代早期...

2017-11-30 22:19:19

阅读数 814

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭