流形学习——局部线性嵌入算法LLE

LLE原理

局部线性嵌入(Locally Linear Embedding, LLE)是无监督非线性降维算法,是流行学习的一种。

LLE和Isomap一样试图在降维过程中保持高维空间中的流形结构。Isomap把任意两个样本点之间的测地距离作为流形结构的特征,而LLE认为局部关系刻画了流形结构。

LLE认为,在高维中间中的任意一个样本点和它的邻居样本点近似位于一个超平面上,所以该样本点可以通过其邻居样本点的线性组合重构出来。

这里写图片描述

我们假设共有 N 个样本点。可以根据欧式距离或者其他相似性度量为每个样本点 xiRd 找到 K 个邻居,用 ηik 表示 xi 的第 k 个邻居点。重构误差为

J(W)=i=1N||xik=1Kwikηik||2(1)

其中 wik 表示在重构 xi 时的第 k 个邻居的权重系数。把所有的重构系数放在矩阵 WRN×K 中,它的第 i 行元素表示重构 xi 时的邻居系数。

为了得到 W ,求解最小化问题

minWs.t.J(W)k=1Kwik=1,i=1,2,,N.(2)

为了使得流形结构在低维空间中得以保持,LLE要求低维空间中的样本点仍能保持上面的局部线性关系。假设 xi 在低维空间中的映射为 yiRd ,令 Y=[y1,y2,,yN] Y 可以通过下面的优化问题进行求解:

minYs.t.i=1N||yij=1Nwijyj||21Ni=1NyiyTi=I.(3)

注意,这里的 wij 和前面的 wik 不完全一样,表示在低维空间中重构第 i 个样本点时,第 j 个样本点的权重。相应的矩阵 WRN×N 可以由上面的 W 构造出来。为了不引起混淆,我们把后者重新写作 W 。当 j 样本点是 i 样本点的邻居时, wij 等于 W 中对应的那个权重值;否则 wij=0 。后面会统一称作 W ,根据上下文确定到底是哪个。

两个优化问题的求解

上面两个优化问题都可以直接得到最优解的解析式。

高维空间中的优化问题

有两种方法可以推出优化问题(2)的最优解。

方法一

wi 表示矩阵 W 的第 i 行元素, Ni=[ηi1,ηi2,,ηiK]Rd×K ,则

J(W)=i=1N||xiNiwTi||2=i=1N(xiNiwTi)T(xiNiwTi)=i=1N(xTixi2xTiNiwTi+wiNTiNiwTi).

由于第一项和 W 无关,所以目标函数等价于

J(W)=i=1N(2xTiNiwTi+wiNTiNiwTi).(4)

构建拉格朗日函数

L(W,λ)=i=1N(2xTiNiwTi+wiNTiNiwTi)+i=1Nλi(wi11),

求导得到:

Lwi=2xTiNi+2wiNTiNi+λi1T=0
  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值