989. 数组形式的整数加法
对于非负整数 X
而言,X
的数组形式是每位数字按从左到右的顺序形成的数组。例如,如果 X = 1231
,那么其数组形式为 [1,2,3,1]
。
给定非负整数 X
的数组形式 A
,返回整数 X+K
的数组形式。
示例 1:
输入:A = [1,2,0,0], K = 34
输出:[1,2,3,4]
解释:1200 + 34 = 1234
示例 2:
输入:A = [2,7,4], K = 181
输出:[4,5,5]
解释:274 + 181 = 455
示例 3:
输入:A = [2,1,5], K = 806
输出:[1,0,2,1]
解释:215 + 806 = 1021
示例 4:
输入:A = [9,9,9,9,9,9,9,9,9,9], K = 1
输出:[1,0,0,0,0,0,0,0,0,0,0]
解释:9999999999 + 1 = 10000000000
提示:
1 <= A.length <= 10000
0 <= A[i] <= 9
0 <= K <= 10000
- 如果
A.length > 1
,那么A[0] != 0
我的Java代码:
思路:主要思路是按位相加,从数组的最后一位开始,逐位加上加数 K 的相应位,如果该位数值超过十,就进位到左边一位。最后相加循环结束时,要判断这时数组和加数 K 的情况:
- K 所有位都已经相加完(num == 0)。那么要看当前数组位置是否超过十,需不需要进位,如果是 A[0] 位置,要考虑先往结果中加入一个进位1。这里如果数组位置在中间,要考虑可能存在多次进位。
- K 还有高位没有相加,这时数组已经遍历到最左端了(num != 0 && i == 0)。这时要先将数组最左端处理完,然后将加数逐位存入结果列表。
最后执行用时为2ms,超100%。
class Solution {
public static List<Integer> addToArrayForm(int[] A, int K) {
int num = K;
int i = A.length-1;
List<Integer> result = new ArrayList<Integer>();
while(num != 0 && i > 0) {
int add = num % 10;
num /= 10;
A[i] += add;
if(A[i] >= 10) {
A[i-1] += 1;
A[i] %= 10;
}
i--;
}
if(num == 0) {
while(A[i] >= 10 && i > 0) {
A[i-1] += 1;
A[i] %= 10;
i--;
}
if(i == 0 && A[i] >= 10) {
result.add(1);
A[i] %= 10;
}
}else if(num != 0 && i == 0) {
int add = num % 10;
num /= 10;
A[i] += add;
if(A[i] >= 10) {
num++;
A[i] %= 10;
}
if(num != 0){
int t = 10000;
boolean flag = false;
while(t != 0) {
int k = num/t;
num %= t;
t /= 10;
if(k != 0) {
flag = true;
}
if(flag) {
result.add(k);
}
}
}
}
for(int j = 0;j < A.length;j++) {
result.add(A[j]);
}
return result;
}
}
学习别人的代码:
思路:逐位相加,但是不改变原有数组。用一个变量 sum 来存储每位相加的结果,从右到左将数组和 K 逐位相加,将进位后的 sum 直接存入列表,将最终得到的列表用 Collections.reverse() 方法逆序。
相比上面的算法更简单易懂,不需要考虑多余的情况。但用了一次逆序,效率稍低一点。
class Solution {
public List<Integer> addToArrayForm(int[] A, int K) {
List<Integer> res = new ArrayList<Integer>();
int n = A.length;
for (int i = n - 1; i >= 0; --i) {
int sum = A[i] + K % 10;
K /= 10;
if (sum >= 10) {
K++;
sum -= 10;
}
res.add(sum);
}
for (; K > 0; K /= 10) {
res.add(K % 10);
}
Collections.reverse(res);
return res;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/add-to-array-form-of-integer/solution/shu-zu-xing-shi-de-zheng-shu-jia-fa-by-l-jljp/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。