1579. 保证图可完全遍历
Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3 种类型的边:
- 类型 1:只能由 Alice 遍历。
- 类型 2:只能由 Bob 遍历。
- 类型 3:Alice 和 Bob 都可以遍历。
给你一个数组 edges
,其中 edges[i] = [typei, ui, vi]
表示节点 ui
和 vi
之间存在类型为 typei
的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。
返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。
示例 1:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]] 输出:2 解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。
示例 2:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]] 输出:0 解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。
示例 3:
输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]] 输出:-1 解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。
提示:
1 <= n <= 10^5
1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
edges[i].length == 3
1 <= edges[i][0] <= 3
1 <= edges[i][1] < edges[i][2] <= n
- 所有元组
(typei, ui, vi)
互不相同
我的Java代码:
思路:
题中给了三中类型的边,Alice的边、Bob的边和公共边,如果将Alice和Bob分开来看,实际上就是两个连通图,可以用并查集来存储并确定图的连通性。而要求要删除最多的边,实际上就要求尽可能的用到公共边(如果A到B点有一条公共边,那么任何从A到B的Alice和Bob的边都可以删去),因此公共边的优先级最高,先遍历并安排公共边,然后再添加两张图各自的边,如果遍历的某条边的两点之间已经连通,那么这条边就可以删除。最后要判断两张图是否都已经连通,如果没有连通则返回 -1。
class Solution {
public static void main(String[] args) {
int n = 4;
int[][] edges1 = new int[][]{{3,1,2},{3,2,3},{1,1,3},{1,2,4},{1,1,2},{2,3,4}};
int[][] edges2 = new int[][]{{3,1,2},{3,2,3},{1,1,4},{2,1,4}};
int[][] edges = new int[][]{{1,1,2},{3,2,3},{2,3,4}};
int result = maxNumEdgesToRemove(n, edges);
System.out.print(result);
}
public static int maxNumEdgesToRemove(int n, int[][] edges) {
int num = 0;
UnionFind Alice = new UnionFind(n+1);
UnionFind Bob = new UnionFind(n+1);
for(int i = 0;i < edges.length;i++) {
if(edges[i][0] == 3) {
if(Alice.isConnected(edges[i][1], edges[i][2])) {
num++;
}else {
Alice.union(edges[i][1], edges[i][2]);
Bob.union(edges[i][1], edges[i][2]);
}
}
}
for(int i = 0;i < edges.length;i++) {
if(edges[i][0] == 1) {
if(Alice.isConnected(edges[i][1], edges[i][2])) {
num++;
}else {
Alice.union(edges[i][1], edges[i][2]);
}
}else if(edges[i][0] == 2) {
if(Bob.isConnected(edges[i][1], edges[i][2])) {
num++;
}else {
Bob.union(edges[i][1], edges[i][2]);
}
}
}
if(Alice.getchilds() < n || Bob.getchilds() < n) {
return -1;
}
return num;
}
public static class UnionFind{
private int[] parents;
private int[] ranks;
private int[] childs;
public UnionFind(int n) {
parents = new int[n];
ranks = new int[n];
childs = new int[n];
for(int i = 0;i < n;i++) {
parents[i] = i;
ranks[i] = 1;
childs[i] = 1;
}
}
public void union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if(rootX == rootY) {
return;
}
if(ranks[rootX] > ranks[rootY]) {
parents[rootY] = rootX;
childs[rootX] += childs[rootY];
}else {
parents[rootX] = rootY;
childs[rootY] += childs[rootX];
}
if(ranks[rootX] == ranks[rootY]) {
ranks[rootY]++;
}
}
public int find(int x) {
if(x != parents[x]) {
parents[x] = find(parents[x]);
}
return parents[x];
}
public boolean isConnected(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if(rootX == rootY) {
return true;
}else {
return false;
}
}
public int getchilds() {
int rootX = find(1);
return childs[rootX];
}
}
}