LeetCode 1579. 保证图可完全遍历(困难)

1579. 保证图可完全遍历

Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3  种类型的边:

  • 类型 1:只能由 Alice 遍历。
  • 类型 2:只能由 Bob 遍历。
  • 类型 3:Alice 和 Bob 都可以遍历。

给你一个数组 edges ,其中 edges[i] = [typei, ui, vi] 表示节点 ui 和 vi 之间存在类型为 typei 的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。

返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。

 

示例 1:

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
输出:2
解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。

示例 2:

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
输出:0
解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。

示例 3:

输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
输出:-1
解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。

 

提示:

  • 1 <= n <= 10^5
  • 1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
  • edges[i].length == 3
  • 1 <= edges[i][0] <= 3
  • 1 <= edges[i][1] < edges[i][2] <= n
  • 所有元组 (typei, ui, vi) 互不相同

我的Java代码:

思路:

题中给了三中类型的边,Alice的边、Bob的边和公共边,如果将Alice和Bob分开来看,实际上就是两个连通图,可以用并查集来存储并确定图的连通性。而要求要删除最多的边,实际上就要求尽可能的用到公共边(如果A到B点有一条公共边,那么任何从A到B的Alice和Bob的边都可以删去),因此公共边的优先级最高,先遍历并安排公共边,然后再添加两张图各自的边,如果遍历的某条边的两点之间已经连通,那么这条边就可以删除。最后要判断两张图是否都已经连通,如果没有连通则返回 -1。

class Solution {
   public static void main(String[] args) {
		int n = 4;
		int[][] edges1 = new int[][]{{3,1,2},{3,2,3},{1,1,3},{1,2,4},{1,1,2},{2,3,4}};
		int[][] edges2 = new int[][]{{3,1,2},{3,2,3},{1,1,4},{2,1,4}};
		int[][] edges = new int[][]{{1,1,2},{3,2,3},{2,3,4}};
		int result = maxNumEdgesToRemove(n, edges);
		System.out.print(result);
	}
	
	public static int maxNumEdgesToRemove(int n, int[][] edges) {
		int num = 0;
		UnionFind Alice = new UnionFind(n+1);
		UnionFind Bob = new UnionFind(n+1);
		for(int i = 0;i < edges.length;i++) {
			if(edges[i][0] == 3) {
				if(Alice.isConnected(edges[i][1], edges[i][2])) {
					num++;
				}else {
					Alice.union(edges[i][1], edges[i][2]);
					Bob.union(edges[i][1], edges[i][2]);
				}
			}
		}
		for(int i = 0;i < edges.length;i++) {
			if(edges[i][0] == 1) {
				if(Alice.isConnected(edges[i][1], edges[i][2])) {
					num++;
				}else {
					Alice.union(edges[i][1], edges[i][2]);
				}
			}else if(edges[i][0] == 2) {
				if(Bob.isConnected(edges[i][1], edges[i][2])) {
					num++;
				}else {
					Bob.union(edges[i][1], edges[i][2]);
				}
			}
		}
		if(Alice.getchilds() < n || Bob.getchilds() < n) {
			return -1;
		}
		return num;
    }
	public static class UnionFind{
		private int[] parents;
		private int[] ranks;
		private int[] childs;
		public UnionFind(int n) {
			parents = new int[n];
			ranks = new int[n];
			childs = new int[n];
			for(int i = 0;i < n;i++) {
				parents[i] = i;
				ranks[i] = 1;
				childs[i] = 1;
			}
		}
		public void union(int x, int y) {
			int rootX = find(x);
			int rootY = find(y);
			if(rootX == rootY) {
				return;
			}
			if(ranks[rootX] > ranks[rootY]) {
				parents[rootY] = rootX;
				childs[rootX] += childs[rootY];
			}else {
				parents[rootX] = rootY;
				childs[rootY] += childs[rootX];
			}
			if(ranks[rootX] == ranks[rootY]) {
				ranks[rootY]++;
			}
		}
		public int find(int x) {
			if(x != parents[x]) {
				parents[x] = find(parents[x]);
			}
			return parents[x];
		}
		public boolean isConnected(int x, int y) {
			int rootX = find(x);
			int rootY = find(y);
			
			if(rootX == rootY) {
				return true;
			}else {
				return false;
			}
		}
		public int getchilds() {
			int rootX = find(1);
			return childs[rootX];
		}
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值