978. 最长湍流子数组
当 A
的子数组 A[i], A[i+1], ..., A[j]
满足下列条件时,我们称其为湍流子数组:
- 若
i <= k < j
,当k
为奇数时,A[k] > A[k+1]
,且当k
为偶数时,A[k] < A[k+1]
; - 或 若
i <= k < j
,当k
为偶数时,A[k] > A[k+1]
,且当k
为奇数时,A[k] < A[k+1]
。
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
返回 A
的最大湍流子数组的长度。
示例 1:
输入:[9,4,2,10,7,8,8,1,9] 输出:5 解释:(A[1] > A[2] < A[3] > A[4] < A[5])
示例 2:
输入:[4,8,12,16] 输出:2
示例 3:
输入:[100] 输出:1
提示:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
我的Java代码:
思路:遍历一遍数组并记录历史最长湍流子数组和当前湍流子数组的长度,用一个flag记录前一次是大于还是小于,初始和相等时是0。然后用了很繁琐的判断嵌套,这段代码写的我都不好意思说我看过软件工程。
class Solution {
public static int maxTurbulenceSize(int[] arr) {
int num = 1, max = 1;
int flag = 0;
for(int i = 1;i < arr.length;i++) {
if(flag == 0) {
if(arr[i] > arr[i-1]) {
flag = 1;
num++;
}else if(arr[i] < arr[i-1]){
flag = -1;
num++;
}
}else if(flag == 1) {
if(arr[i] > arr[i-1]) {
flag = 1;
if(num > max) {
max = num;
}
num = 2;
}else if(arr[i] < arr[i-1]){
flag = -1;
num++;
}else {
flag = 0;
if(num > max) {
max = num;
}
num = 1;
}
}else if(flag == -1) {
if(arr[i] > arr[i-1]) {
flag = 1;
num++;
}else if(arr[i] < arr[i-1]){
flag = -1;
if(num > max) {
max = num;
}
num = 2;
}else {
flag = 0;
if(num > max) {
max = num;
}
num = 1;
}
}
}
if(num > max) {
max = num;
}
return max;
}
}