《算法导论》第四章-第4节_练习(参考答案)

这篇博客详细解答了《算法导论》第四章第4节的多个练习,包括使用递归树和替换方法确定各种递归式的渐近上界,并提供了严格的证明过程。
摘要由CSDN通过智能技术生成

算法导论(第三版)参考答案:练习4.4-1,练习4.4-2,练习4.4-3,练习4.4-4,练习4.4-5,练习4.4-6,练习4.4-7,练习4.4-8,练习4.4-9

Exercise 4.4-1

Use a reccursion tree to determine a good asymptotic upper bound on the recurrence T(n)=3T(n/2)+n . Use the substitution method to verify your answer.

假设 n 是2的幂(忍受不精确),则递归树为

01

注:请看更正版,一个更好的渐进紧确界。

树高 lgn ,叶节点数量为 3lgn=nlg3 ,整棵树的代价:

T(n)=n+(32)n+(32)2n++(32)lgn1n+Θ(nlg3)=i=0lgn1(32)in+Θ(nlg3)=n(3/2)lgn1(3/2)1+Θ(nlg3)<n(3/2+1/2)lgn1(3/2)1+Θ(nlg3)<nn1(3/2)1+Θ(nlg3)=O(n2)

代入法证明 T(n)cn2+2n :
T(n)3c(n/2)2+2n/2+n=34cn2+2ncn2+2n

O(n2) T(n) 的一个渐进上界。

更正:

T(n)=n+(32)n+(32)2n++(32)lgn1n+Θ(nlg3)=i=0lgn1(32)in+Θ(nlg3)=n(3/2)lgn1(3/2)1+Θ(nlg3)=2n(3lgnn1)+Θ(nlg3)=23lgn2n+Θ(nlg3)=O(nlg(3))

代入法证明 T(n)cnlg3+2n :
T(n)3c(n/2)lg3+2n/2+n=cnlg3+2n=O(nlg3)

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值