view3
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
15、大规模多区域城市道路网络的多步无模型自适应学习路由与周边控制策略研究
本文研究了大规模多区域城市道路网络中的多步无模型自适应学习路由与周边控制策略(多步 cMFAPLC)。该策略采用CFDL数据建模方法,无需系统数学模型,具有数据驱动、易于更新和计算负担小的优势。通过与NC、BBC、GC和MPC等基准策略的对比实验表明,多步 cMFAPLC在缓解交通拥堵、提升行程完成流量、降低总旅行时间等方面表现最优,能实现全区域畅通。文章还分析了其在实际应用中的适应性,并展望了其在智能交通系统中的应用前景与未来研究方向。原创 2025-10-07 01:47:07 · 32 阅读 · 0 评论 -
14、大规模多区域城市道路网络的交通控制策略
本文提出了一种适用于大规模多区域城市道路网络的多步无模型自适应学习控制策略(multi-step cMFAPLC),通过动态线性化数据建模和滚动优化机制,同步解决路线引导与周边控制问题。该策略无需精确交通模型,仅依赖输入输出数据,具有低计算复杂度、强鲁棒性和对实际约束的良好适应性。相比传统方法如MPC和一步DED-MFAPLC,多步cMFAPLC在减少车辆总耗时、提升行程完成流量方面表现更优,并具备良好的实时性与扩展潜力,为城市交通管理提供了高效、实用的解决方案。原创 2025-10-06 15:18:22 · 33 阅读 · 0 评论 -
13、大规模多区域城市道路网络周边控制策略仿真研究
本文通过仿真实验研究了一步式 DED-MFAPLC 策略在大规模多区域城市道路网络周边控制中的性能,并与 FTC 和 MPC 方法进行对比。在低噪声和高噪声条件下,DED-MFAPLC 均表现出优越的控制效果,能有效缓解拥堵、提升网络吞吐量、降低旅行时间,且计算效率显著高于 MPC。研究表明,该策略在存在模型失配和测量噪声的实际交通场景中具有强鲁棒性和应用潜力,为城市交通管理提供了高效、可行的解决方案。原创 2025-10-05 09:29:59 · 21 阅读 · 0 评论 -
12、大规模多区域城市道路网络的控制策略
本文针对大规模多区域城市道路网络(MRUTS)的交通控制问题,提出了一种分散式单步和集中式多步无模型自适应预测学习控制策略。该方法采用数据驱动方式,无需精确交通模型,仅依赖系统输入输出数据实现边界控制与区域间路线引导,有效应对模型不匹配和系统耦合问题。通过子系统分解、动态线性化与伪梯度估计,设计了实时性强、鲁棒性高的单步DED-MFAPLC控制器;进一步结合多步预测与自适应学习机制,实现了路线引导与边界控制的协同优化,提升整体交通网络的服务水平。所提方法简化了网络划分要求,支持实时在线控制,适用于复杂动态的原创 2025-10-04 16:28:04 · 24 阅读 · 0 评论 -
11、多步无模型自适应预测学习周边控制策略解析
多步无模型自适应预测学习带约束控制(multi-step cMFAPLC)是一种面向中规模双区域城市交通系统的数据驱动周边控制策略。该方法结合了无模型自适应控制(MFAPLC)与模型预测控制(MPC)的优势,仅依赖系统输入输出数据进行动态线性化建模,无需复杂的宏观基本图(MFD)建模过程,有效应对交通系统的高度不确定性。通过设计伪雅可比矩阵(PJM)的学习律和多步预测机制,并结合输入输出约束,构建凸二次规划问题求解最优控制输入。数值模拟结果显示,该策略在减少拥堵、优化车辆分布和降低总时间花费(TTS)方面显原创 2025-10-03 14:25:02 · 28 阅读 · 0 评论 -
10、城市交通区域边界控制的一步无模型自适应预测学习方法
本文提出了一种基于数据驱动的一步无模型自适应预测学习控制(IOC-MFAPLC)方法,用于解决中等规模双区域城市交通系统的边界控制问题。该方法无需精确数学模型,通过动态线性化和伪雅可比矩阵在线估计,结合输入输出约束优化,实现对边界控制比率的实时调整。仿真结果表明,与固定时间控制(FTC)和bang-bang控制(BBC)相比,IOC-MFAPLC显著提升了交通吞吐量,有效缓解了区域拥堵,充分利用了道路空间资源,展现出优越的控制性能和应用潜力。原创 2025-10-02 14:01:08 · 25 阅读 · 0 评论 -
9、高速列车与城市交通网络控制技术解析
本文探讨了高速列车自动运行系统与城市交通网络的先进控制技术。在高速列车领域,采用基于径向基函数神经网络(RBFNN)的迭代学习控制(PILC)方法,有效应对列车质量随机变化和外部干扰,实现精确的速度跟踪。在城市交通方面,分析了传统控制方法的局限性,提出引入宏观基本图(MFD)的概念以简化建模,并探讨其在区域交通控制中的应用特性。进一步地,针对MFD方法存在的问题,提出了基于数据驱动的周边控制策略,如IOC-MFAPLC和cMFAPLC,无需依赖精确模型,仅利用输入输出数据即可实现对双区域交通系统的优化控制。原创 2025-10-01 15:27:47 · 39 阅读 · 0 评论 -
8、高速列车自动运行系统与预测迭代学习控制
本文提出了一种基于径向基函数神经网络(RBFNN)的预测迭代学习控制(PILC)方法,用于解决高速列车自动运行系统中的复杂非线性与未知外部干扰问题。该方法将列车系统视为未知非仿射非线性系统,无需先验模型信息,通过构建RBFNN沿迭代方向估计系统的伪偏导数和外部干扰,并结合自回归模型预测未来迭代参数,实现有限时间内的精确速度跟踪控制。文章详细阐述了控制算法的设计流程、参数更新机制及仿真验证结果,表明该方法在处理重复性任务、强非线性和不确定性方面具有优越性能。同时,对比了传统控制方法的局限性,分析了其优势与应用原创 2025-09-30 14:54:42 · 36 阅读 · 0 评论 -
7、具有不可用状态系统的预测迭代学习控制
本文提出了一种针对具有不可用状态的非仿射非线性系统的预测迭代学习控制(PILC)方法。通过设计基于降阶观测器的状态与参数估计机制,实现了对不可测状态及未知干扰的有效观测与预测。结合动态线性化模型和多步预测机制,构建了输出误差预测模型,并在此基础上设计了带约束的优化控制律。该方法仅依赖输入输出数据,无需精确系统模型,适用于存在外部干扰和初始偏差的重复运行系统。通过仿真验证了所提方法在复杂干扰下的良好跟踪性能与收敛性,同时支持系统监测与故障诊断应用。原创 2025-09-29 16:39:10 · 20 阅读 · 0 评论 -
6、具有全状态信息系统的预测迭代学习控制
本文提出了一种针对具有全状态信息的未知多输入多输出(MIMO)非仿射非线性系统的基于全状态观测器的鲁棒约束预测迭代学习控制(PILC)方法。通过设计无需模型信息的迭代学习观测器,实现了对系统伪雅可比矩阵和干扰差分的有效估计,并证明了其收敛性。利用观测结果进行参数预测,进一步设计了满足输入与状态约束的预测ILC控制器。仿真结果表明,该方法能有效减小跟踪误差,实现良好的迭代收敛性能,适用于存在外部干扰和模型不确定性的复杂系统控制。原创 2025-09-28 12:13:43 · 21 阅读 · 0 评论 -
5、具有未知时滞系统的预测迭代学习控制
本文针对具有未知时变时滞的多输入多输出(MIMO)非仿射非线性系统,提出了一种基于时滞补偿的预测迭代学习控制(PILC)方法。通过利用时滞上下界信息,构建了TD-ILCFDL动态线性化模型,并设计了相应的迭代学习估计算法与预测算法,实现了对系统伪雅可比矩阵的在线估计与未来迭代参数的预测。结合滚动优化策略和简化控制律,有效避免了高维矩阵求逆问题,提升了算法实用性。理论分析证明了建模误差随迭代趋于零,跟踪误差收敛至一个有界残差,确保了控制系统的收敛性。该方法不依赖精确数学模型,适用于多种存在未知时滞的实际系统,原创 2025-09-27 12:00:03 · 30 阅读 · 0 评论 -
4、可变试验长度系统的预测迭代学习控制
本文提出了一种针对可变试验长度系统的基于数据补偿的预测迭代学习控制(PILC)方法,旨在解决实际运行中因操作时间不一致导致的输出误差数据缺失问题。通过引入结合历史数据与预测数据的新补偿机制,设计了迭代学习估计与预测算法,并构建了跟踪误差预测模型。理论分析证明了建模误差和跟踪控制误差在迭代过程中均收敛于零。仿真实验验证了该方法在存在输入输出约束条件下仍能有效提升系统跟踪性能。该方法具有良好的工业应用前景,适用于化工批次过程、机器人重复任务等场景,未来可进一步优化算法效率并扩展至多系统协同控制与不确定性环境下的原创 2025-09-26 09:35:29 · 28 阅读 · 0 评论 -
3、受限预测迭代学习控制:原理与应用
本文提出了一种针对具有输入和输出约束的未知非仿射非线性系统的受限预测迭代学习控制(PILC)方法。通过将系统转换为等效的动态线性化模型,结合修正投影算法和多级分层预测方法进行参数估计与预测,并构建带有约束的优化问题以求解控制输入。理论分析证明了跟踪误差沿迭代轴渐近收敛至零。仿真结果验证了该方法的有效性,同时文章也讨论了其优势、局限及未来研究方向,包括降低计算复杂度、放宽假设条件和扩展至多变量系统。原创 2025-09-25 16:35:34 · 29 阅读 · 0 评论 -
2、未知系统的预测迭代学习控制
本文提出了一种针对未知非仿射非线性单输入单输出系统的预测迭代学习控制(PILC)方法。该方法完全基于输入/输出数据,不依赖系统数学模型,通过等效动态线性化模型和自适应学习增益设计,实现跟踪误差的单调收敛。理论分析证明了PPD估计的有界性和误差的逐点收敛性,仿真结果验证了方法的有效性。该方法在工业自动化、能源管理和生物医学工程等领域具有广泛应用前景。原创 2025-09-24 11:48:53 · 18 阅读 · 0 评论 -
1、预测学习控制:原理、方法与应用
本文介绍了预测学习控制的基本原理、方法及其在复杂工业过程和交通系统中的应用。预测学习控制结合了预测控制的优化能力和学习控制的性能迭代提升能力,主要分为预测迭代学习控制(PILC)和预测重复控制(PRC)。文章重点探讨了针对未知非仿射非线性系统的PILC设计方法,涵盖无约束、约束条件、试验长度变化、时间延迟及状态可观测性等不同情况,并展示了其在高速列车自动运行和城市交通系统中的仿真应用效果。未来研究将聚焦于不依赖系统模型的智能控制策略,推动其在智能交通等领域的广泛应用。原创 2025-09-23 13:51:26 · 33 阅读 · 0 评论
分享